摘要:
A substrate capable of achieving a lowered probability of defects produced in a step of forming an epitaxial film or a semiconductor element, a semiconductor device including the substrate, and a method of manufacturing a semiconductor device are provided. A substrate is a substrate having a front surface and a back surface, in which at least a part of the front surface is composed of single crystal silicon carbide, the substrate having an average value of surface roughness Ra at the front surface not greater than 0.5 nm, a standard deviation σ of that surface roughness Ra not greater than 0.2 nm, an average value of surface roughness Ra at the back surface not smaller than 0.3 nm and not greater than 10 nm, standard deviation σ of that surface roughness Ra not greater than 3 nm, and a diameter D of the front surface not smaller than 110 mm.
摘要:
A method of evaluating damage of a compound semiconductor member, comprising: a step of performing spectroscopic ellipsometry measurement on a surface of the compound semiconductor member; and a step of evaluating damage on the surface of the compound semiconductor member, using a spectrum in a wavelength band containing a wavelength corresponding to a bandgap of the compound semiconductor member, in a spectrum of an optical constant obtained by the spectroscopic ellipsometry measurement.
摘要:
An active layer 17 is provided so as to emit light having a light emission wavelength in the range of 440 to 550 nm. A first conduction type gallium nitride-based semiconductor region 13, the active layer 17, and a second conduction type gallium nitride-based semiconductor region 15 are disposed in a predetermined axis Ax direction. The active layer 17 includes a well layer composed of hexagonal InXGa1-XN (0.16≦X≦0.35, X: strained composition), and the indium composition X is represented by a strained composition. The a-plane of the hexagonal InXGa1-XN is aligned in the predetermined axis Ax direction. The thickness of the well layer is in the range of more than 2.5 nm to 10 nm. When the thickness of the well layer is set to 2.5 nm or more, a light emitting device having a light emission wavelength of 440 nm or more can be formed.
摘要:
A method for surface treatment of a group III nitride crystal includes the steps of lapping a surface of a group III nitride crystal using a hard abrasive grain with a Mohs hardness higher than 7, and abrasive-grain-free polishing the lapped surface of the group III nitride crystal using a polishing solution without containing abrasive grain, and the polishing solution without containing abrasive grain has a pH of not less than 1 and not more than 6, or not less than 8.5 and not more than 14. Accordingly, the method for surface treatment of a group III nitride crystal can be provided according to which hard abrasive grains remaining at the lapped crystal can be removed to reduce impurities at the crystal surface.
摘要:
A nitride semiconductor wafer is planar-processed by grinding a bottom surface of the wafer, etching the bottom surface by, e.g., KOH for removing a bottom process-induced degradation layer, chamfering by a rubber whetstone bonded with 100 wt %-60 wt % #3000-#600 diamond granules and 0 wt %-40 wt % oxide granules, grinding and polishing a top surface of the wafer, etching the top surface for eliminating a top process-induced degradation layer and maintaining a 0.5 μm-10 μm thick edge process-induced degradation layer.
摘要:
A compound semiconductor substrate 10 according to the present invention is comprised of a Group III nitride and has a surface layer 12 containing a chloride of not less than 200×1010 atoms/cm2 and not more than 12000×1010 atoms/cm2 in terms of Cl and an oxide of not less than 3.0 at % and not more than 15.0 at % in terms of O, at a surface. The inventors conducted elaborate research and newly discovered that when the surface layer 12 at the surface of the compound semiconductor substrate 10 contained the chloride of not less than 200×1010 atoms/cm2 and not more than 12000×1010 atoms/cm2 in terms of Cl and the oxide of not less than 3.0 at % and not more than 15.0 at % in terms of O, Si was reduced at an interface between the compound semiconductor substrate 10 and an epitaxial layer 14 formed thereon and, as a result, the electric resistance at the interface was reduced.
摘要翻译:根据本发明的化合物半导体衬底10由III族氮化物组成,其表面层12含有不低于200×10 10原子/ cm 2且不大于12000×10 10原子/ cm 2的氯化物 以及表面为O以上且3.0at%以上且15.0at%以下的氧化物。 本发明人进行了详细的研究,并且新发现,当化合物半导体基板10的表面上的表面层12含有不小于200×10 10原子/ cm 2且不大于12000×10 10原子/ cm 2的氯化物时,以Cl 并且氧化物以O计为3.0at%且不大于15.0at%时,在化合物半导体衬底10和形成在其上的外延层14之间的界面处Si还原,结果,电阻 在界面缩小。
摘要:
A compound semiconductor substrate 10 according to the present invention is comprised of a Group III nitride and has a surface layer 12 containing a chloride of not less than 200×1010 atoms/cm2 and not more than 12000×1010 atoms/cm2 in terms of Cl and an oxide of not less than 3.0 at % and not more than 15.0 at % in terms of O, at a surface. The inventors conducted elaborate research and newly discovered that when the surface layer 12 at the surface of the compound semiconductor substrate 10 contained the chloride of not less than 200×1010 atoms/cm2 and not more than 12000×1010 atoms/cm2 in terms of Cl and the oxide of not less than 3.0 at % and not more than 15.0 at % in terms of O, Si was reduced at an interface between the compound semiconductor substrate 10 and an epitaxial layer 14 formed thereon and, as a result, the electric resistance at the interface was reduced.
摘要翻译:根据本发明的化合物半导体衬底10由III族氮化物组成,其表面层12含有不低于200×10 10原子/ cm 2且不大于12000×10 10原子/ cm 2的氯化物 以及表面为O以上且3.0at%以上且15.0at%以下的氧化物。 本发明人进行了详细的研究,并且新发现,当化合物半导体基板10的表面上的表面层12含有不小于200×10 10原子/ cm 2且不大于12000×10 10原子/ cm 2的氯化物时,以Cl 并且氧化物以O计为3.0at%且不大于15.0at%时,在化合物半导体衬底10和形成在其上的外延层14之间的界面处Si还原,结果,电阻 在界面缩小。
摘要:
In a hydrogen atom generation source in a vacuum treatment apparatus which can effectively inhibit hydrogen atoms from being recombined due to contact with an internal wall surface of a treatment chamber of the vacuum treatment apparatus and an internal wall surface of a transport passage, and being returned into hydrogen molecules, at least a part of a surface facing a space with the hydrogen atom generation source formed therein of a member surrounding the hydrogen atom generation source is coated with SiO2. In a hydrogen atom transportation method for transporting hydrogen atoms generated by the hydrogen atom generation source in the vacuum treatment apparatus to a desired place, the hydrogen atoms are transported via a transport passage whose internal wall surface is coated with SiO2.
摘要:
A method of evaluating damage of a compound semiconductor member, comprising: a step of performing spectroscopic ellipsometry measurement on a surface of the compound semiconductor member; and a step of evaluating damage on the surface of the compound semiconductor member, using a spectrum in a wavelength band containing a wavelength corresponding to a bandgap of the compound semiconductor member, in a spectrum of an optical constant obtained by the spectroscopic ellipsometry measurement.
摘要:
An active layer 17 is provided so as to emit light having a light emission wavelength in the range of 440 to 550 nm. A first conduction type gallium nitride-based semiconductor region 13, the active layer 17, and a second conduction type gallium nitride-based semiconductor region 15 are disposed in a predetermined axis Ax direction. The active layer 17 includes a well layer composed of hexagonal InXGa1-XN (0.16≦X≦0.35, X: strained composition), and the indium composition X is represented by a strained composition. The a-plane of the hexagonal InXGa1-XN is aligned in the predetermined axis Ax direction. The thickness of the well layer is in the range of more than 2.5 nm to 10 nm. When the thickness of the well layer is set to 2.5 nm or more, a light emitting device having a light emission wavelength of 440 nm or more can be formed.