Abstract:
A thin-film magnetic head includes a slider substrate and a write element. The slider substrate has an air bearing surface at one side thereof. The write element has a recording magnetic pole film. The recording magnetic pole film is disposed on a plane crossing the air bearing surface over the slider substrate and has a large-width portion and a small-width portion continuously arranged in the named order toward the air bearing surface. The small-width portion has a smaller width than the large-width portion. Of the large-width portion and the small-width portion, at least the small-width portion has a first portion and a second portion. The second portion is continuous with an upper end of the first portion and has both side faces inclined in such a direction as to increase the width. An external angle of the first portion formed by a plane parallel to a bottom face and the side face is larger than an external angle of the second portion formed by a plane parallel to the bottom face and the side face.
Abstract:
A thin film magnetic recording head having a multilayer structure in which plural thin films are laminated and being a perpendicular recording type that applies a magnetic field perpendicularly to a magnetic recording medium and performs recording, includes a main magnetic pole exposed on an air bearing surface facing the magnetic recording medium and guiding a magnetic flux toward the magnetic recording medium, a thin film positioned beneath the main magnetic pole from a perspective of a lamination direction and configuring a sensor or a heater configured to determine a distance from the magnetic recording medium of the thin film magnetic recording head, and a light-absorbing portion positioned between the main magnetic pole and the thin film.
Abstract:
The present invention relates to a method of making a mask for patterning a thin film The method includes a step of forming an inorganic material, which is resolvable into alkali solution, on a substrate; a step of forming the inorganic material in a predetermined pattern; and a step of narrowing the inorganic material with the alkali solution to form the mask.
Abstract:
A method of manufacturing a perpendicular magnetic head having a writing element that writes magnetic information to a recording medium includes forming a main magnetic pole part generating a magnetic field on a substrate; removing at least a part of the substrate and a material existing at a circumference of the main magnetic pole part to expose an entire circumference of the main magnetic pole part at a surface that becomes an opposing medium surface (ABS) opposite to the recording medium; forming a shield gap film that is made of a nonmagnetic material so as to cover the entire circumference of the main magnetic pole part at least at the surface that becomes the ABS; and forming a shield layer so as to cover an entire circumference of the shield gap film at least at the surface that becomes the ABS.
Abstract:
The present invention relates to a shaping method of a thin film layer and a manufacturing method of a perpendicular recording magnetic head using the same. In the thin film layer shaping method according to the present invention, since a second thin film of a lower etching rate is etched by a preliminary etching amount allowing for a difference between the etching rate of the second thin film and an etching rate of a first thin film in side-by-side relationship with each other, both the first and second thin films can be etched by the same etching amount through a subsequent etching step, so that the thin film layer can be shaped into a given shape. Thus, the surface of the thin film layer can be planarized.
Abstract:
A main magnetic pole includes a first part extending from a medium facing surface to a point at a predetermined distance from the medium facing surface, and a second part other than the first part. An accommodation part for accommodating the main magnetic pole includes: a first layer having a groove; a second layer lying between the first layer and the main magnetic pole in the first layer's groove; and a third layer interposed in part between the second layer and the main magnetic pole in the first layer's groove. The second layer is formed of a metal material different from a material used to form the first layer. The third layer is formed of an inorganic insulating material. The second and third layers lie between the first layer and the first part. The second layer lies between the bottom of the first layer's groove and the second part, but the third layer does not. The distance between the bottom of the first layer's groove and the second part is smaller than that between the bottom and the first part.
Abstract:
A manufacturing method for a magnetic head includes the steps of; forming a structure on a lower shield, the structure including a lower gap, a main magnetic pole and first and second side gaps; forming first and second side shields; forming an upper gap; and forming an upper shield. In the step of forming the structure, an initial lower gap layer is formed on the lower shield, the initial lower gap layer including a pre-lower-gap portion, and two to-be-removed portions that are located on opposite sides of the pre-lower-gap portion. Then, a protrusion including the main magnetic pole and the first and second side gaps is formed on the pre-lower-gap portion. With the top surface of the protrusion covered with a mask, the initial lower gap layer is etched in part to thereby form the lower gap.
Abstract:
In a method of forming a patterned thin film, a first film to be patterned and a peelable film are sequentially formed on a base layer, and an undercut mask is then formed thereon. Then, using of the mask, the peelable film and the first film to be patterned are etched selectively to form a first patterned thin film. During the etching, a substance that forms the first film to be patterned deposits to form a deposition film on the peelable film. Then, a film to be patterned is formed over the entire surface. During the formation, a substance that forms the film to be patterned deposits to form another deposition film on the peelable film. The mask and the peelable film are then peeled off to remove the deposition films together.
Abstract:
A flash-erasable semiconductor memory device has a memory cell array including a plurality of memory cell transistors each having an insulated floating gate for storing information and a control electrode provided on the floating gate, wherein the flash-erasable semiconductor memory device includes a write control circuit supplied with a write control signal, when writing information. The write control circuit produces a control signal such that a leading edge of the drain control signal appears after a leading edge of the gate control signal. Further, the gate control circuit shuts off the gate control signal such that a trailing edge of the gate control signal appears after a trailing edge of the drain control signal.
Abstract:
A flash-erasable semiconductor memory device comprises a memory cell array including a plurality of memory cell transistors each having an insulated floating gate for storing information and a control electrode provided on said floating gate, wherein the flash-erasable semiconductor memory device includes a write control circuit supplied with a write control signal, when writing information. The write control circuit produces a control signal such that a leading edge of the drain control signal appears after a leading edge of the gate control signal. Further, the gate control circuit shuts off the gate control signal such that a trailing edge of the gate control signal appears after a trailing edge of the drain control signal.