Abstract:
The present invention relates to a semiconductor light emitting device including: a substrate for element mounting; a wiring provided on the substrate; an LED element provided on the substrate and electrically connected to the wiring; an encapsulating resin layer for encapsulating the LED element; and a wavelength conversion layer which contains a phosphor material and converts a wavelength of light emitted by the LED element, in which the wavelength conversion layer is provided on an upper side of the LED element, and a diffusive reflection resin layer is provided in a state that side faces of the LED element are surrounded therewith, and an area at the LED element face side of the wavelength conversion layer is at least twice larger by area ratio than an area of light emitting area on an upper surface of the LED element.
Abstract:
A light-emitting device includes a circuit board to which external electric power is supplied, a light emitting diode that is electrically connected onto the circuit board and emits light based on electric power from the circuit board, a housing provided on the circuit board so as to surround the light emitting diode and so that the upper end portion of the housing is positioned above the upper end portion of the light emitting diode, and a fluorescent laminate provided on the housing. The fluorescent laminate includes a first fluorescent layer that emits fluorescent light and a second fluorescent layer that emits fluorescent light having a wavelength that is longer than that of the first fluorescent layer. The second fluorescent layer is disposed on the housing and the first fluorescent layer is laminated on the second fluorescent layer.
Abstract:
A transfer sheet for a phosphor layer includes a release substrate, a phosphor layer formed on the release substrate, and an adhesive layer formed on the phosphor layer.
Abstract:
A method for producing a light-emitting diode device includes the steps of: preparing a light-emitting laminate including an optical semiconductor layer, and an electrode unit formed on the optical semiconductor layer; forming an encapsulating resin layer on the optical semiconductor layer so as to cover the electrode unit, the encapsulating resin layer containing a light reflection component; partially removing the encapsulating resin layer so as to expose the top face of the electrode unit, thereby producing a light-emitting diode element; and disposing the light-emitting diode element and a base substrate provided with terminals so that the light-emitting diode element and the base substrate face each other, and that the electrode unit and the terminals are electrically connected, thereby flip chip mounting the light-emitting diode element on the base substrate.
Abstract:
A reflecting material contains a silicone resin composition prepared from a polysiloxane containing silanol groups at both ends, an ethylenic silicon compound, a silicon compound containing an epoxy group, an organohydrogenpolysiloxane, a condensation catalyst, and an addition catalyst; and a light reflecting component.
Abstract:
A method for producing a light emitting diode device includes the steps of preparing a phosphor layer formed in a sheet state; forming a light semiconductor layer on one surface in a thickness direction of the phosphor layer; forming an electrode portion on one surface of the light semiconductor layer; forming an encapsulating resin layer containing a light reflecting component so as to cover the light semiconductor layer and the electrode portion; producing the light emitting diode element by partially removing the encapsulating resin layer so as to expose one surface of the electrode portion; and allowing the electrode portion to be electrically connected to the terminal, so that the light emitting diode element is flip-chip mounted on the base board.
Abstract:
The present invention relates to a resin composition for forming an insulating resin layer for optical semiconductor element housing package having a concave portion in which a metal lead frame and an optical semiconductor element mounted thereon are housed, in which the resin composition includes the following ingredients (A) to (D), and the ingredients (C) and (D) are contained in a blend ratio (C)/(D) of 0.26 to 3.0 as a weight ratio thereof: (A) an epoxy resin; (B) an acid anhydride curing agent; (C) a white pigment; and (D) an inorganic filler.
Abstract:
A sealing member includes an elongated releasing film, and a plurality of sealing resin layers composed of a sealing resin, the plurality of sealing resin layers being laminated on the releasing film so that the plurality of sealing resin layers are arranged in a row along the longitudinal direction of the releasing film with a space provided therebetween.
Abstract:
A light emitting diode sealing member includes a light emitting diode sealing layer, and a lens mold layer laminated on the light emitting diode sealing layer.
Abstract:
A light-emitting device includes a circuit board to which external electric power is supplied, a light emitting diode that is electrically connected onto the circuit board and emits light based on electric power from the circuit board, a housing provided on the circuit board so as to surround the light emitting diode and so that the upper end portion of the housing is positioned above the upper end portion of the light emitting diode, and a fluorescent laminate provided on the housing. The fluorescent laminate includes a first fluorescent layer that emits fluorescent light and a second fluorescent layer that emits fluorescent light having a wavelength that is longer than that of the first fluorescent layer. The second fluorescent layer is disposed on the housing and the first fluorescent layer is laminated on the second fluorescent layer.