Abstract:
A method and apparatus for generating a phase-locked output signal includes generating an intermediate signal phase locked to an input signal by frequency dividing the intermediate signal by a temporally-varying divide ratio sequence to generate a first feedback signal and phase comparing the first feedback signal with the input signal. An output signal is generated phase locked to the first feedback signal by frequency dividing the output signal by the temporally-varying divide ratio sequence to generate a second feedback signal and phase comparing the second feedback signal with the first feedback signal.
Abstract:
Systems and methods of monitoring thin film deposition are described. In one aspect, a thin film deposition sensor includes an acoustical resonator (e.g., a thin film bulk acoustical resonator) that has an exposed surface and is responsive to thin film material deposits on the exposed surface. A substrate clip may be configured to attach the thin film deposition sensor to a substrate. A transceiver circuit may be configured to enable the thin film deposition sensor to be interrogated wirelessly. A method of monitoring a thin film deposition on a substrate also is described.
Abstract:
A periodic superconducting device signal quantizer for the fine resolution of the magnetic flux quantum .PHI..sub.0 =2*10.sup.-15 Wb realized by a phase wheel 20 or a phase tree 100. The signal quantizer is used in conjunction with a superconducting A/D converter for achieving the 8-11 bit A/D converters with gigahertz, multi-gigahertz bandwidth. A method for an extra-bit resolution of the analog signal using the signal quantizer is described.
Abstract:
The present invention is directed to systems and methods capable of analyzing a wide variety of input signal waveforms to arbitrate their arrival sequence with a high resolution. In an exemplary embodiment, the apparatus is an arbiter circuit which includes an input means for inputting signals whose waveforms are to be analyzed, a comparator means for distinguishing arrival times of the input signals, the comparator means further including means for quantizing flux, and an output means for outputting information which identifies the arrival of at least one of the input signals. In an alternate embodiment, feedback means are provided for compensating asymmetries in the comparator means.
Abstract:
A magnetometer having high sensitivity and high resolution is achieved using superconductive circuit elements. The magnetometer includes a pick-up coil, amplifying transformer quantum flux parametron (QFP), latch, feedback gate and feedback inductor fabricated with superconducting elements and coupled to a bidirectional counter. The magnetometer implements an on-chip negative feedback loop. The pick-up coil senses an external magnetic field or gradient resulting in an induced current which is amplified and fed to the QFP which generates a directional indicator signal sent to the latch. When the polarity of the indicator is indicated as corresponding to the polarity of a latch clock signal, a current signal is sent to the feedback gate causing a packet of quantum flux to be generated. The packet is fed back through the feedback inductor, inducing a current in the pick-up coil which opposes the induced current attributable to the external magnetic field. When the induced current in the pick-up coil attributable to the external magnetic field is offset by the induced current attributable to the feedback flux, the magnetometer stabilizes.
Abstract:
A single-chip duplexer, interfacing a receiver and a transmitter with a common antenna, includes transmit and receive filters, an annular sealing ring and a conductive stripe. The transmit filter is connected between the antenna and the transmitter, and has a transmit passband. The receive filter is connected between the antenna and the receiver, and has a receive passband different from the transmit passband. The annular sealing ring is connected between a surface of the chip and a surface of a cap to form a sealed cavity between the chip and the cap. The conductive stripe extends across at least a portion of the surface of the chip between the transmit filter and the receive filter, the conductive stripe being directly connected to the sealing ring and electrically connected to ground. The conductive stripe provides at least one of magnetic shielding and capacitive shielding between the transmit filter and the receive filter.
Abstract:
A single-chip duplexer, interfacing a receiver and a transmitter with a common antenna, includes transmit and receive filters, an annular sealing ring and a conductive stripe. The transmit filter is connected between the antenna and the transmitter, and has a transmit passband. The receive filter is connected between the antenna and the receiver, and has a receive passband different from the transmit passband. The annular sealing ring is connected between a surface of the chip and a surface of a cap to form a sealed cavity between the chip and the cap. The conductive stripe extends across at least a portion of the surface of the chip between the transmit filter and the receive filter, the conductive stripe being directly connected to the sealing ring and electrically connected to ground. The conductive stripe provides at least one of magnetic shielding and capacitive shielding between the transmit filter and the receive filter.
Abstract:
A method and apparatus for modulating a digital input signal is disclosed. The digital input signal is partitioned into a less-significant bit signal and a more-significant bit signal. A lower-order modulation of the less-significant bit signal is performed to generate an intermediate output signal. The intermediate output signal is appended to the more-significant bit signal to form an intermediate input signal. A higher-order modulation of the intermediate input signal is performed to generate a digital output signal. The higher-order modulation is of an order higher than the lower-order modulation. A phase-locked loop using the method and apparatus is disclosed.
Abstract:
Transmitter frequency locking across a full duplex communications link. An offset in one transmitter results in an offset at the corresponding receiver. That receiver offset shifts its transmitter in a corresponding manner, causing a correcting offset in the first receiver, which is used to correct the first transmitter. A first embodiment uses filtered received frequency information derived from a baseband demodulator to correct transmitter frequency. A second embodiment uses filtered frequency information from a frequency detector to correct transmitter frequency.
Abstract:
Systems and methods of monitoring thin film deposition are described. In one aspect, a thin film deposition sensor includes an acoustical resonator (e.g., a thin film bulk acoustical resonator) that has an exposed surface and is responsive to thin film material deposits on the exposed surface. A substrate clip may be configured to attach the thin film deposition sensor to a substrate. A transceiver circuit may be configured to enable the thin film deposition sensor to be interrogated wirelessly. A method of monitoring a thin film deposition on a substrate also is described.