摘要:
In one embodiment, a processor includes a plurality of cores, at least two of which may execute redundantly, a configuration register to store a first synchronization domain indicator to indicate that a first core and a second core are associated with a first synchronization domain, and a power controller having a synchronization circuit to cause a dynamic adjustment to a frequency of at least one of the first and second cores to cause these cores to operate at a common frequency, based at least in part on the first synchronization domain indicator. Other embodiments are described and claimed.
摘要:
In one embodiment, a processor includes at least one core to execute instructions and a power controller coupled to the at least one core. The power controller may include a first logic to cause the at least one core to exit an idle state and enter into a maximum performance state for a first time duration, thereafter enter into an intermediate power state for a second time duration, and thereafter enter into a sustained performance state. Other embodiments are described and claimed.
摘要:
An apparatus and method are described for coupling a front end core to an accelerator component (e.g., such as a graphics accelerator). For example, an apparatus is described comprising: an accelerator comprising one or more execution units (EUs) to execute a specified set of instructions; and a front end core comprising a translation lookaside buffer (TLB) communicatively coupled to the accelerator and providing memory access services to the accelerator, the memory access services including performing TLB lookup operations to map virtual to physical addresses on behalf of the accelerator and in response to the accelerator requiring access to a system memory.
摘要:
Methods and apparatus relating to multi-level CPU (Central Processing Unit) high current protection are described. In one embodiment, different workloads may be assigned different license types and/or weights based on micro-architectural events (such as uop (micro-operation) types and sizes) and/or data types. Other embodiments are also disclosed and claimed.
摘要:
An apparatus and method are described for coupling a front end core to an accelerator component (e.g., such as a graphics accelerator). For example, an apparatus is described comprising: an accelerator comprising one or more execution units (EUs) to execute a specified set of instructions; and a front end core comprising a translation lookaside buffer (TLB) communicatively coupled to the accelerator and providing memory access services to the accelerator, the memory access services including performing TLB lookup operations to map virtual to physical addresses on behalf of the accelerator and in response to the accelerator requiring access to a system memory.
摘要:
Techniques described above may enhance the power-performance efficiency of a processor, SoC, or a computing system. Embodiments described here allow an increase in frequency of the clock signal to a peak frequency value in response to detecting an occurrence of a burst of high activity within the low processor utilization periods. A power management unit may accumulate the budget during the low or idle processor utilization periods and the level of activity of the burst of high activity signal may be determined. The PMU may increase the frequency of the clock signal provided to the processing cores if the level of the burst of high activity exceeds a first threshold value and an accumulated budget value exceeds a second threshold value.
摘要:
An apparatus is described having multiple cores, each core having: a) an accelerator; and, b) a general purpose CPU coupled to the accelerator. The general purpose CPU has functional unit logic circuitry to execute an instruction that returns an amount of storage space to store context information of the accelerator.
摘要:
A processor saves micro-architectural contexts to increase the efficiency of code execution and power management. A save instruction is executed to store a micro-architectural state and an architectural state of a processor in a common buffer of a memory upon a context switch that suspends the execution of a process. The micro-architectural state contains performance data resulting from the execution of the process. A restore instruction is executed to retrieve the micro-architectural state and the architectural state from the common buffer upon a resumed execution of the process. Power management hardware then uses the micro-architectural state as an intermediate starting point for the resumed execution.
摘要:
In an embodiment, a processor includes multiple cores and a power controller. The power controller may include a hardware duty cycle (HDC) logic to cause at least one logical processor of one of the cores to enter into a forced idle state even though the logical processor has a workload to execute. In addition, the HDC logic may cause the logical processor to exit the forced idle state prior to an end of an idle period if at least one other logical processor is prevented from entry into the forced idle state. Other embodiments are described and claimed.
摘要:
A mechanism is described for facilitating faster suspend/resume operations in computing systems according to one embodiment of the invention. A method of embodiments of the invention includes initiating an entrance process into a first sleep state in response to a sleep call at a computing system, transforming from the first sleep state to a second sleep state. The transforming may include preserving at least a portion of processor context at a local memory associated with one or more processor cores of a processor at the computing system. The method may further include entering the second sleep state.