Abstract:
One preferred method for use in making a device structure with use of the resist channel shrinking solution includes the steps of forming a first pedestal portion within a channel of a patterned resist; applying a resist channel shrinking solution comprising a resist channel shrinking film and corrosion inhibitors within the channel of the patterned resist; baking the resist channel shrinking solution over the patterned resist to thereby reduce a width of the channel of the patterned resist; removing the resist channel shrinking solution; and forming a second pedestal portion within the reduced-width channel of the patterned resist. Advantageously, the oxide layer and the corrosion inhibitors of the resist channel shrinking solution reduce corrosion in the pedestal during the act of baking the resist channel shrinking solution.
Abstract:
A method for manufacturing thin-film magnetic head sliders is disclosed. Initially, an elastic layer, which may be made of poly-dimethyl siloxane (PDMS), is spun on a wafer and is thermally cured. Then, a resist layer is spun on the elastic layer. Both the resist layer and the elastic layer are subsequently peeled off together from the wafer. Next, the peeled resist layer/elastic layer is applied onto a group of magnetic heads with the resist layer in direct contact with the magnetic heads. Finally, the elastic layer is peeled off from the resist layer such that the resist layer remains attaching to the magnetic heads.
Abstract:
An improved process for making thin film magnetic heads using an insulation comprising a polymer, a crosslinking agent, and 4-sulfonate diazonaphthoquinone.
Abstract:
The invention relates to an ambient light electrophoretic display comprising a plurality of cells containing a suspension of charged pigment particles in a light-transmissive fluid. Each cell comprises a light-transmissive front window, a nonobstructing collecting electrode and counter electrode disposed in the cell, and a panel having a reflective or absorbing surface.
Abstract:
A method is presented for repairing damaged photomasks for electronic component fabrication processes, particularly for fabrication of the ABS of a disk drive slider. The method includes applying an overcoat of material having index of fraction which is close to the index of refraction of the photoresist material of the damaged photomask to produce a non-scattering boundary surface. The overcoat material preferably includes an overcoat base material which is a polymer having an index of refraction which is in the range of plus or minus 0.1 from the index of refraction of said photoresist material.
Abstract:
Methods of forming a component of a thin film magnetic head and improving the plating of a component of a thin film magnetic head are provided. The methods include the use of a high activation energy chemically amplified photoresist (CARS) that is contacted with a low pH high saturation magnetic moment plating solution to form a magnetic head component that is essentially free of plating defects. The methods find utility in hard disk drive applications, such as in the manufacture of magnetic poles for the write head of a hard disk drive.
Abstract:
In one illustrative example, a method for use in making a magnetic write head includes the steps of forming a first pole piece layer of a first pole piece; forming a patterned resist over the first pole piece layer; electroplating a pedestal over the first pole piece layer within a channel of the patterned resist; electroplating a metal gap layer over the pedestal within the channel of the patterned resist; forming a resist channel shrinking film over the patterned resist; baking the resist channel shrinking film over the patterned to thereby reduce a width of the channel; removing the resist channel shrinking film; electroplating a second pole piece within the reduced-width channel of the patterned resist; removing the patterned resist; and milling the pedestal, using the second pole piece as a mask, to form a central notched pedestal having side walls with angled slopes.
Abstract:
One preferred method for use in making a device structure with use of the resist channel shrinking solution includes the steps of forming a first pedestal portion within a channel of a patterned resist; applying a resist channel shrinking solution comprising a resist channel shrinking film and corrosion inhibitors within the channel of the patterned resist; baking the resist channel shrinking solution over the patterned resist to thereby reduce a width of the channel of the patterned resist; removing the resist channel shrinking solution; and forming a second pedestal portion within the reduced-width channel of the patterned resist. Advantageously, the oxide layer and the corrosion inhibitors of the resist channel shrinking solution reduce corrosion in the pedestal during the act of baking the resist channel shrinking solution.
Abstract:
The invention relates to an aqueous ink composition for use in ink jet printers comprising an aqueous carrier; a pigment; and a copolymer comprising a hydrophilic segment having an acidic function group, and a hydrophobic segment having a hydrolytically stable siloxyl substituent.
Abstract:
A method is provided for planarization of structures which minimizes step heights, reduces process steps, improves cleanliness, and provides increased ease of debond. Structures are placed with working surfaces facing down onto an adhesive layer such that structures remain fixed during heating. A bi-layer encapsulating film is used to achieve planarization. A carrier is bi-laminated with a thermoplastic film layer followed by a chemically inert protective polymer film layer that can withstand etch and cleaning processes. The thermoplastic layer is laminated on top of the carrier; the polymer layer is laminated on top of the joined thermoplastic layer and carrier. The carrier with bi-layer film is then placed onto the backside of the structures to resist chemical attack from the front side during photostrip and enable planarization. When heat is applied, the bi-layer encapsulating film melts and pushes the polymer layer into the gaps between structures thereby achieving complete planarization.