Abstract:
A method for manufacturing a magnetic write head having a stepped trailing shield. The stepped trailing shield is formed by forming a non-magnetic bump over a write pole prior to electroplating a wrap-around magnetic shield. The method allows the location of the front edge of the bump relative to the back edge of the wrap-around shield to be monitored by measuring the electrical resistance of an electrical lapping guide formed concurrently with these features. This concurrent formation of a lapping guide can be used to define the relative location of other features as well, such as the location of a back edge of a wrap-around shield relative to a flare point of a write pole.
Abstract:
Methods and structures for the fabrication of wrap around and trailing shield structures are disclosed. Seed layers having anti-reflective properties are utilized, eliminating the need to deposit, then remove, traditional inorganic anti-reflection coatings prior to shield plating.
Abstract:
Embodiments of the present invention pertain to controlling thickness of wafers during electroplating process. Information pertaining to an old current used during an electroplating process of a previous wafer is received. Information pertaining to the thickness of the previous wafer is received. A new current is automatically determined. The new current is to be used during an electroplating process for a new wafer. The new current is determined based on the information pertaining to the old current and the information pertaining to the thickness of the previous wafer.
Abstract:
A magnetic write head and method of manufacture thereof that has a first pole structure having a notched structure configured with a steep shoulder portion and a narrow vertical notch portion extending from the top of the steep shoulder portion. The write head also includes a second pole structure (P2) that has a very narrow width (track width) and that is self aligned with the narrow vertical notch structure of the first pole structure. The write head provides excellent magnetic properties including a very narrow track width and minimal side writing, while avoiding magnetic saturation of the poles.
Abstract:
The present invention presents a plasma processing system for etching a layer on a substrate comprising a process chamber, a diagnostic system coupled to the process chamber and configured to measure at least one endpoint signal, and a controller coupled to the diagnostic system and configured to determine in-situ at least one of an etch rate and an etch rate uniformity of the etching from the endpoint signal. Furthermore, an in-situ method of determining an etch property for etching a layer on a substrate in a plasma processing system is presented comprising the steps: providing a thickness of the layer; etching the layer on the substrate; measuring at least one endpoint signal using a diagnostic system coupled to the plasma processing system, wherein the endpoint signal comprises an endpoint transition; and determining the etch rate from a ratio of the thickness to a difference between a time during the endpoint transition and a starting time of the etching.
Abstract:
A method of automatically configuring an Advanced Process Control (APC) system for a semiconductor manufacturing environment in which an auto-configuration script is generated for executing an auto-configuration program. The auto-configuration script activates default values for input to the auto-configuration program. The auto-configuration script is executed to generate an enabled parameter file output from the auto-configuration program. The enabled parameter file identifies parameters for statistical process control (SPC) chart generation.
Abstract:
Embodiments of the present invention pertain to controlling thickness of wafers during electroplating process. Information pertaining to an old current used during an electroplating process of a previous wafer is received. Information pertaining to the thickness of the previous wafer is received. A new current is automatically determined. The new current is to be used during an electroplating process for a new wafer. The new current is determined based on the information pertaining to the old current and the information pertaining to the thickness of the previous wafer.
Abstract:
A magnetic write head and method of manufacture thereof that has a first pole structure having a notched structure configured with a steep shoulder portion and a narrow vertical notch portion extending from the top of the steep shoulder portion. The write head also includes a second pole structure (P2) that has a very narrow width (track width) and that is self aligned with the narrow vertical notch structure of the first pole structure. The write head provides excellent magnetic properties including a very narrow track width and minimal side writing, while avoiding magnetic saturation of the poles.
Abstract:
A magnetic disk drive head is disclosed including a write head, which includes a P1 layer having a pedestal portion, a gap layer formed on the P1 layer, and a P2 layer formed on the gap layer. The P1 layer includes a shoulder formation having a neck portion and a beveled portion. Also disclosed is a disk drive having a write head with a P1 layer with shoulder formation, and a method for fabricating a write pole for a magnetic recording head having a P1 layer with shoulder formation.
Abstract:
Methods and structures for the fabrication of both thin film longitudinal and perpendicular write heads are disclosed. A unique feature of these write heads is the inclusion of layered return poles, which comprise alternating layers of 22/78 and 80/20 NiFe alloys. The alternating layers also vary in thickness, the 22/78 NiFe layers having a nominal thickness of 1500 angstroms and the 80/20 NiFe layers having a nominal thickness of about 75 angstroms. Head efficiency and signal to noise ratios are significantly improved in heads having layered return pole construction.