Abstract:
In one illustrative example, a method for use in making a magnetic write head includes the steps of forming a first pole piece layer of a first pole piece; forming a patterned resist over the first pole piece layer; electroplating a pedestal over the first pole piece layer within a channel of the patterned resist; electroplating a metal gap layer over the pedestal within the channel of the patterned resist; forming a resist channel shrinking film over the patterned resist; baking the resist channel shrinking film over the patterned to thereby reduce a width of the channel; removing the resist channel shrinking film; electroplating a second pole piece within the reduced-width channel of the patterned resist; removing the patterned resist; and milling the pedestal, using the second pole piece as a mask, to form a central notched pedestal having side walls with angled slopes.
Abstract:
A pedestal is formed over a first pole piece layer and insulator materials are formed to surround it. A gap layer made of a non-magnetic insulator or metal is then formed over the pedestal and the insulator, followed by the optional formation of a seed layer. A second pole piece is formed over the gap layer with or without the seed layer by forming a patterned resist using E-beam lithography and electroplating second pole piece materials within the patterned resist. After milling to remove side portions of the gap layer and the optional seed layer, a chemical etch is performed to remove a top portion of the insulator materials. The pedestal is then notched and trimmed by ion milling using the second pole piece as a mask to form a central notched structure. Since the second pole piece is precisely centered over the pedestal prior to notching, the pedestal is notched symmetrically to form a notched structure having side walls with angled slopes.
Abstract:
First, second and third pole tip components of a write head are formed with the second pole tip located between the first and third components and a write gap layer located between the first and second pole tip components. The second pole tip is formed with a width that defines a track width of the write head. The third pole tip component is formed with top and bottom surfaces wherein the bottom surface interfaces a top surface of the second pole tip component and has a width equal to the track width and wherein the top surface of the third pole tip has a width greater than the track width.
Abstract:
A method of making provides an inverted merged MR head wherein frame plating is not required for forming a highly defined submicron track width of a top first pole tip portion. A forming structure is formed on a bottom first pole tip portion with a vertical wall located at a site where one of the edges of the top first pole tip is to be located. The top first pole tip is sputtered or plated on the vertical wall of the forming structure with a thickness that defines the track width of the write head. A mask with a recessed portion may be employed for forming the top first pole tip with a back wall that defines a zero throat height of the head. In a preferred embodiment a forming layer is formed adjacent an opposite edge of the top first pole tip and then the top surfaces of the top first pole tip, the forming layer and the forming structure are lapped until these top surfaces are flush with one another. The material of the top first pole tip has an ion milling rate that is greater than the ion milling rates of the forming layer and the forming structure. Ion milling is then employed to ion mill the top of the top first pole tip at a greater rate than the other layers causing a recess which is centered above the top surface of the top first pole tip. After depositing a write gap layer and a seedlayer in the recess the second pole tip is deposited in the recess causing the base of the second pole tip to be substantially aligned with the top surface of the top first pole tip. Sloping surfaces extending from the base of the second pole tip are similar to notching of a first pole piece in the prior art which promotes flux transfer between the pole tips and minimizes stray flux from the second pole tip to the bottom first pole tip.
Abstract:
A magnetic head includes a first pole piece; a second pole piece; a pedestal formed over a central portion of the first pole piece; a gap separating the pedestal from the second pole piece; and at least one of a top straight walled portion over the pedestal and a bottom straight-walled portion underneath the pedestal, the pedestal being notched with angled side walls.
Abstract:
A magnetic head having an improved fringing field and overwrite capability, and a method of making the same, are described. The method includes the acts of frame plating a pedestal over a first pole piece; depositing an insulator over the first pole piece and plated pedestal; chemically mechanically polishing (CMP) the top of the insulator to expose a top of the plated pedestal; depositing a gap layer over the top of the insulator and plated pedestal; depositing a seed layer over the gap layer; forming a second pole piece over the seed layer; ion milling, using the second pole piece as a mask, such that end portions of the seed layer are removed and a central portion remains; reactive ion milling, using the central portion of the seed layer as a mask, such that end portions of the gap layer are removed and a central portion of the gap layer having a width that is greater than a width of the second pole piece is formed; and ion milling the plated pedestal, using the central portion of the gap layer as a mask, to form a central notched structure having angled side walls of 25 degrees±24 degrees relative to normal.
Abstract:
A method makes an inverted merged MR head with a second pole tip which is self-aligned with a top first pole tip. After forming a bottom first pole tip layer a top first pole tip is frame plated thereon with a width that defines a track width of the merged MR head. A photoresist layer, which is employed in the frame plating of the top first pole tip, is then soft baked which causes a photoresist opening above the top first pole tip to have sloping side edges which form a recess. An electrically-conductive sacrificial layer, such as copper, is then plated into the recess on top of the top first pole tip and the photoresist is removed. A forming layer, such as alumina, is then deposited and lapped so that the forming layer and the sacrificial layer have top surfaces that are flush with respect to one another. The sacrificial layer is then removed by an etchant that will not attack the materials of the pole tips and the forming layer. The forming layer now has a recess with sloping edges into which a gap layer, a seedlayer and a second pole tip layer are deposited. By this method the second pole tip is self-aligned with the top first pole tip with the second pole tip having a bottom that is substantially the same width as the top of the top first pole tip.
Abstract:
Methods for creating a write head by forming a bump after the top pole is formed are provided. In one embodiment, a bottom pole is created out of a first layer. A non-magnetic gap material is applied to the surface of the wafer. A top pole is created out of a second layer. After creating the top pole, a bump is created. The bump is used to protect at least a portion of the first layer while etching to create a stray flux absorber.
Abstract:
A single-sided, notched write head is provided for writing narrow erase band servo tracks as well as a double-notched write head, and for writing data tracks better than a double-notched write head. The single-sided, notched write head writes a narrow erase band on the notched side and a wide erase band on the unnotched side. In one embodiment, only one side of the first pole piece layer is notched, and in another embodiment a first side of the first pole piece layer is notched more than a second side. By writing servo tracks only a fraction of the track width of the write head, a wide erase band region is overwritten so that a narrow erase band is on each side of the servo track. Data tracks are written with a narrow erase band on one side and a wide erase band on the other side. The wide erase band on one side of the data track allows more flexibility in spacing the read head from adjacent tracks. The single-sided, notched write head can be manufactured with methods that require less processing time than a double-notched write head. In one method, a notching layer is employed where removal of a small corner of the notching layer provides the first pole piece with a notch. Other methods employ photoresist to protect the side of the first pole piece that is not to be notched, and/or oscillating the workpiece less than 360° so that milling is more concentrated at the notch site.
Abstract:
A high throughput method for producing the narrow track width inductive head is also provided, whereby the heads may be manufactured in substantial volumes. The new head may be merged or piggy-backed MR or GMR heads, comprising a first pole piece, P1, and a second pole piece, P2, and is distinctly characterized by write track width is significantly reduced by a preliminary ion milling process before P1 notching is performed. The preliminary step utilizes an ion milling process to trim the write track width, P2B, at an angle between 45 to 85 degrees from the wafer normal. The MR head may then undergo conventional P1 notching.