Abstract:
Methods and apparatus provide magnetoresistance sensors. A tunneling magnetoresistance (TMR) sensor may include configurations that are arranged as a top TMR stack. One of two antiparallel layers of pinned layers within the TMR stack may be subdivided by a spacer layer. Tantalum may form the spacer layer that is inserted in a reference layer, which is one of the pinned layers and is located between a barrier layer and an antiparallel coupling layer that enables antiparallel coupling between the reference layer and a keeper layer of the pinned layers. The barrier layer deposited on a free layer of the TMR stacks separates the pinned layers from the free layer such that TMR effects are detectable with the sensors.
Abstract:
A magnetic read transducer is described with a magnetoresistive sensor that has a free layer, and an antiferromagnetically-coupled (AFC) soft bias layer for magnetically biasing the free layer. The free layer has a first edge in a track width direction along an air-bearing surface (ABS). At least a portion of the AFC soft bias layer is conformal to at least a portion of a second edge of the free layer, and situated to form a magnetic moment at an angle with respect to a center line of the free layer. The center line of the free layer extends in the same direction as the free layer first edge that is in the track width direction along the ABS.
Abstract:
A method and system for testing a read transducer are described. The read transducer includes a read sensor fabricated on a wafer. A system includes a test structure that resides on the wafer. The test structure includes a test device and a heater. The test device corresponds to the read sensor. The heater is in proximity to the test device and is configured to heat the test device substantially without heating the read sensor. Thus, the test structure allows for on-wafer testing of the test device at a plurality of temperatures above an ambient temperature.
Abstract:
A method and system for providing a magnetic read transducer is described. The magnetic read transducer includes a magnetoresistive sensor a shield, and a spin pumping barrier layer. The magnetoresistive sensor includes a pinned layer, a spacer layer, and a free layer. The spacer layer is nonmagnetic and resides between the pinned layer and the free layer. The free layer is between the pinned layer and the shield. The spin pumping barrier layer is between the shield and the free layer.
Abstract:
A method for manufacturing a magnetoresistive sensor that decreases the stack height of the sensor. The method includes forming a sensor structure having at its top, a Ru layer and a Ta layer over the Ru layer. An annealing process is performed to set the magnetization of the pinned layer of the sensor structure. After the annealing process has been completed and the Ta layer is no longer needed, an ion milling process is performed to remove the Ta layer.
Abstract:
A combined manufacturable wafer and test device for measuring a tunneling-magnetoresistance property of a tunneling-magnetoresistance, sensor-layer structure. The combined manufacturable wafer and test device comprises a tunneling-magnetoresistance, sensor-layer structure disposed on a substrate. The combined manufacturable wafer and test device also comprises a plurality of partially fabricated tunneling-magnetoresistance sensors; at least one of the partially fabricated tunneling-magnetoresistance sensors is disposed at one of a plurality of first locations. The test device is disposed on the substrate at a second location different from the plurality of first locations. The test device allows measurement of the tunneling-magnetoresistance property of the tunneling-magnetoresistance, sensor-layer structure using a current-in-plane-tunneling technique.
Abstract:
Tunneling magnetoresistive (TMR) electrical lapping guides (ELG) are disclosed for use in wafer fabrication of magnetic sensing devices, such as magnetic recording heads using TMR read elements. A TMR ELG includes a TMR stack comprising a first conductive layer, a barrier layer, and a second conductive layer of TMR material. The TMR ELG also includes a first lead and a second lead that connect to conductive pads used for applying a sense current to the TMR ELG in a current in plane (CIP) fashion. The first lead contacts one side of the TMR stack so that the first lead contacts both the first conductive layer and the second conductive layer of the TMR stack. The second lead contacts the other side of the TMR stack so that the second lead contacts both the first conductive layer and the second conductive layer of the TMR stack.
Abstract:
A dual spin valve (SV) sensor is provided with a longitudinal bias stack sandwiched between a first SV stack and a second SV stack. The longitudinal bias stack comprises an antiferromagnetic (AFM) layer sandwiched between first and second ferromagnetic layers. The first and second SV stacks comprise antiparallel (AP)-pinned layers pinned by AFM layers made of an AFM material having a higher blocking temperature than the AFM material of the bias stack allowing the AP-pinned layers to be pinned in a transverse direction and the bias stack to be pinned in a longitudinal direction. The demagnetizing fields of the two AP-pinned layers cancel each other and the bias stack provides flux closures for the sense layers of the first and second SV stacks.
Abstract:
Disclosed is a spin-valve sensor disposed between first and second gap layers and formed of one or more in-situ oxidized films. The improved spin valve sensor helps eliminate electrical shorting between the spin-valve sensor and shield layers. A fabrication method of the gap layers comprises repeatedly depositing a metallic films on a wafer in a DC-magnetron sputtering module of a sputtering system, and then transferring the wafer in a vacuum to an oxidation module where in-situ oxidation is conducted. This deposition/in-situ oxidation process is repeated until a designed thicknesses of gap layers is attained. Smaller, more sensitive spin-valve sensors may be sandwiched between thinner gap layers formed of in-situ oxidized films, thus allowing for greater recording data densities in disk drive systems.
Abstract:
A method is described comprising forming an insulating polycrystalline seed layer in a first chamber by reactively pulsed DC magnetron sputtering, then forming an insulating amorphous-like seed layer in a second chamber by reactively pulsed DC magnetron sputtering, then forming a conducting seed layer and a ferromagnetic free layer in a third chamber by ion beam sputtering, and then forming the remainder of a spin valve sensor through the antiferromagnetic layer in a fourth chamber by DC magnetron sputtering.