Abstract:
An electronic device includes a semiconductor memory, and the semiconductor memory includes a first magnetic layer having a variable magnetization direction; a second magnetic layer having a pinned magnetization direction; and a tunnel barrier layer interposed between the first magnetic layer and the second magnetic layer, wherein the second magnetic layer includes a ferromagnetic material with molybdenum (Mo) added thereto.
Abstract:
Although a method for changing a combustion method taking place in an internal combustion engine depending on running condition is proposed, it can be considered that conditions under which a combustion noise occurs naturally differ with different methods. A detection method of prior art is not compatible with different combustion methods and the accuracy of combustion noise detection was low. Accurate combustion noise detection is enabled by identifying a combustion mode taking place in the internal combustion engine, selecting a sensed frequency or frequency band of a combustion noise sensor that detects a combustion noise in a combustion chamber of the internal combustion engine according to the combustion mode, and detecting a combustion noise.
Abstract:
According to one embodiment, a magnetoresistive memory device includes a first magnetic layer, a second magnetic layer, a nonmagnetic layer provided between the first magnetic layer and the second magnetic layer, and a third magnetic layer provided on a side of the first or second magnetic layer opposite to the nonmagnetic layer. The third magnetic layer has a multilayer film having an artificial lattice structure, and the third magnetic layer is partly microcrystalline or amorphous.
Abstract:
According to one embodiment, a magnetoresistive element comprises a first magnetic layer, a second magnetic layer, a first nonmagnetic layer, a second nonmagnetic layer, and a third magnetic layer. The first magnetic layer has a variable magnetization direction. The second magnetic layer has an invariable magnetization direction and includes a nonmagnetic material film and a magnetic material film. The first nonmagnetic layer is arranged between the first magnetic layer and the second magnetic layer. The second nonmagnetic layer is arranged on a surface of the second magnetic layer. The third magnetic layer is arranged on a surface of the second nonmagnetic layer. The second nonmagnetic layer is in contact with the nonmagnetic material film included in the second magnetic layer.
Abstract:
According to one embodiment, a magnetoresistive element comprises a first magnetic layer, a second magnetic layer, a first nonmagnetic layer, a second nonmagnetic layer, and a third magnetic layer. The first magnetic layer has a variable magnetization direction. The second magnetic layer has an invariable magnetization direction and includes a nonmagnetic material film and a magnetic material film. The first nonmagnetic layer is arranged between the first magnetic layer and the second magnetic layer. The second nonmagnetic layer is arranged on a surface of the second magnetic layer. The third magnetic layer is arranged on a surface of the second nonmagnetic layer. The second nonmagnetic layer is in contact with the nonmagnetic material film included in the second magnetic layer.
Abstract:
According to one embodiment, a magnetoresistive element includes first, second and third magnetic layers, and first and second nonmagnetic layers. The third magnetic layer has stack layers including a first stack layer close to the second magnetic layer, and a second stack layer far from the second magnetic layer. Each of the first and second stack layers includes a first layer made of a ferromagnetic material and a second layer made of a nonmagnetic material, and a first ratio of a film thickness of the first layer to that of the second layer in the first stack layer is higher than a second ratio of a film thickness of the first layer to that of the second layer in the second stack layer.
Abstract:
According to one embodiment, a method of manufacturing a magneto-resistive element, includes forming a first ferromagnetic layer on a substrate, forming a tunnel barrier layer on the first ferromagnetic layer, forming a second ferromagnetic layer containing B on the tunnel barrier layer, exposing a laminate of the first ferromagnetic layer, the tunnel barrier layer, and the second ferromagnetic layer under a pressurized atmosphere, and annealing the laminate while being exposed to the pressurized atmosphere, thereby promoting the orientation of the second magnetic layer.
Abstract:
According to one embodiment, a magnetoresistive element includes first, second and third magnetic layers, and first and second nonmagnetic layers. The third magnetic layer has stack layers including a first stack layer close to the second magnetic layer, and a second stack layer far from the second magnetic layer. Each of the first and second stack layers includes a first layer made of a ferromagnetic material and a second layer made of a nonmagnetic material, and a first ratio of a film thickness of the first layer to that of the second layer in the first stack layer is higher than a second ratio of a film thickness of the first layer to that of the second layer in the second stack layer.
Abstract:
According to one embodiment, a magnetoresistive element is disclosed. The magnetoresistive element includes a first magnetic layer having a variable magnetization direction. A first nonmagnetic layer is provided on the first magnetic layer. A second magnetic layer having a fixed magnetization direction is provided on the first nonmagnetic layer. The first magnetic layer, the first nonmagnetic layer and the second magnetic layer are preferredly oriented in a cubical crystal (111) plane.
Abstract:
Disclosed is an image pickup device, by which cut resistance at the time of cutting a wafer lens is reduced, high production efficiency is maintained, and excellent optical characteristics are obtained. The image pickup device has a first lens block, a second lens block, a spacer, and a sensor unit. The side surface section of the first lens block, the side surface section of the second lens block, and the side surface section of the spacer are formed on the same plane. A lens cover that covers the first and the second lens blocks is provided in a step formed by respective side surface sections of the first lens block, the second lens block and the spacer, and the side surface section of the sensor unit.