摘要:
In one general aspect, a method of forming a field effect transistor can include forming a well region in a semiconductor region of a first conductivity type where the well region is of a second conductivity type and has an upper surface and a lower surface. The method can include forming a gate trench extending into the semiconductor region to a depth below a depth of the lower surface of the well region, and forming a stripe trench extending through the well region and into the semiconductor region to a depth below the depth of the gate trench. The method can also include forming a contiguous source region of the first conductivity type in the well region where the source region being in contact with the gate trench and in contact with the stripe trench.
摘要:
A lateral MOSFET having a substrate, first and second epitaxial layers grown on the substrate and a gate electrode formed on a gate dielectric which in turn is formed on a top surface of the second epitaxial layer. The second epitaxial layer comprises a drain region which extends to a top surface of the epitaxial layer and is proximate to a first edge of the gate electrode, a source region which extends to a top surface of the second epitaxial layer and is proximate to a second edge of the gate electrode, a heavily doped body under at least a portion of the source region, and a lightly doped well under the gate dielectric located near the transition region of the first and second epitaxial layers. A PN junction between the heavily doped body and the first epitaxial region under the heavily doped body has an avalanche breakdown voltage that is substantially dependent on the doping concentration in the upper portion of the first epitaxial layer that is beneath the heavily doped body.
摘要:
A method of forming a field effect transistor includes: forming a trench in a semiconductor region; forming a shield electrode in the trench; performing an angled sidewall implant of impurities of the first conductivity type to form a channel enhancement region adjacent the trench; forming a body region of a second conductivity type in the semiconductor region; and forming a source region of the first conductivity type in the body region, the source region and an interface between the body region and the semiconductor region defining a channel region therebetween, the channel region extending along the trench sidewall. The channel enhancement region partially extends into a lower portion of the channel region to thereby reduce a resistance of the channel region.
摘要:
A field effect transistor includes a body region of a first conductivity type in a semiconductor region of a second conductivity type. A gate trench extends through the body region and terminating within the semiconductor region. A source region of the second conductivity type extends in the body region adjacent the gate trench. The source region and an interface between the body region and the semiconductor region define a channel region therebetween which extends along the gate trench sidewall. A channel enhancement region of the second conductivity type is formed adjacent the gate trench. The channel enhancement region partially extends into a lower portion of the channel region to thereby reduce a resistance of the channel region.
摘要:
A method for forming thick oxide at the bottom of a trench formed in a semiconductor substrate includes forming a conformal oxide film that fills the trench and covers a top surface of the substrate. and etching the oxide film off the top surface of the substrate and inside the trench to leave a substantially flat layer of oxide having a target thickness at the bottom of the trench. The oxide film can be deposited by sub-atmospheric chemical vapor deposition processes, directional Tetraethoxysilate (TEOS) processes, or high density plasma deposition processes that form a thicker oxide at the bottom of the trench than on the sidewalls of the trench.
摘要:
A field effect transistor includes a body region of a first conductivity type in a semiconductor region of a second conductivity type. A gate trench extends through the body region and terminating within the semiconductor region. A source region of the second conductivity type extends in the body region adjacent the gate trench. The source region and an interface between the body region and the semiconductor region define a channel region therebetween which extends along the gate trench sidewall. A channel enhancement region of the second conductivity type is formed adjacent the gate trench. The channel enhancement region partially extends into a lower portion of the channel region to thereby reduce a resistance of the channel region.
摘要:
A lateral MOSFET having a substrate, first and second epitaxial layers grown on the substrate and a gate electrode formed on a gate dielectric which in turn is formed on a top surface of the second epitaxial layer. The second epitaxial layer comprises a drain region which extends to a top surface of the epitaxial layer and is proximate to a first edge of the gate electrode, a source region which extends to a top surface of the second epitaxial layer and is proximate to a second edge of the gate electrode, a heavily doped body under at least a portion of the source region, and a lightly doped well under the gate dielectric located near the transition region of the first and second epitaxial layers. A PN junction between the heavily doped body and the first epitaxial region under the heavily doped body has an avalanche breakdown voltage that is substantially dependent on the doping concentration in the upper portion of the first epitaxial layer that is beneath the heavily doped body.
摘要:
A method for forming a FET includes the following steps. Trenches are formed in a semiconductor region of a first conductivity type. A well region of a second conductivity type is formed in the semiconductor region. Source regions of the first conductivity type are formed in the well region such that channel regions defined by a spacing between the source regions and a bottom surface of the well region are formed in the well region along opposing sidewalls of the trenches. A gate dielectric layer having a non-uniform thickness is formed along the opposing sidewalls of the trenches such that a variation in thickness of the gate dielectric layer along at least a lower portion of the channel regions is: (i) substantially linear, and (ii) inversely dependent on a variation in doping concentration in the lower portion of the channel regions. A gate electrode is formed in each trench.
摘要:
A method of forming a field effect transistor device includes: forming a well region of a second conductivity type in a semiconductor substrate of a first conductivity type, the semiconductor substrate having a major surface and a drain region; forming a source region of the first conductivity type in the well region; forming a trench gate electrode adjacent to the source region; forming a stripe trench extending from the major surface of the semiconductor substrate into the semiconductor substrate to a predetermined depth; and depositing a semiconductor material of the second conductivity type within the stripe trench.
摘要:
A method can include forming a drift region, forming a well region above the drift region, and forming an active trench extending through the well region and into the drift region. The method can include forming a first source region in contact with a first sidewall of the active trench and a second source region in contact with a second sidewall of the active trench. The method also includes forming a charge control trench where the charge control trench is aligned parallel to the active trench and laterally separated from the active trench by a mesa region, and where the portion of the well region is in contact with the charge control trench and excludes any source region. The method also includes forming an oxide along a bottom of the active trench having a thickness greater than a thickness of an oxide along the first sidewall of the active trench.