摘要:
A device for ionizing sample particles of a sample gas flow comprises a first flow tube for providing the sample gas flow, and an introducing means for providing H2SO4 molecules to an interaction region. In addition the device comprises a generator for producing reagent primary ions from particles of candidate reagent gas flow essentially in a primary ion production region. The device is configured to introduce said reagent primary ions with H2SO4 molecules in said interaction region in order to arrange interaction between the reagent primary ions and the H2SO4 molecules, thereby producing HSO4− ions and again to produce HSO4− ion clusters comprising HSO4− ions and at least two H2SO4 molecules via interactions of HSO4− with other H2SO4 molecules in said interaction region. Furthermore the device is configured to introduce said HSO4− ion clusters with the sample particles of the sample gas flow in order to provide reactions between said HSO4− ion clusters and the sample particles, and thereby provide a sample cluster comprising the HSO4− ion clusters and said base sample to be determined.
摘要翻译:用于离子化样品气流的样品颗粒的装置包括用于提供样品气体流的第一流管和用于向相互作用区域提供H 2 SO 4分子的引入装置。 此外,该装置包括用于从基本上在一次离子产生区域中的候选反应物气体流的颗粒产生试剂初级离子的发生器。 该装置被配置为在所述相互作用区域中引入所述试剂初级离子与H 2 SO 4分子,以便布置试剂初级离子和H 2 SO 4分子之间的相互作用,由此产生HSO 4 - 离子,并再次产生包含HSO 4 - 离子的HSO 4 - 离子簇, 通过HSO4-与所述相互作用区域中的其它H 2 SO 4分子的相互作用,至少两个H 2 SO 4分子。 此外,该装置被配置为将所述HSO 4离子簇与样品气体流的样品颗粒引入,以便提供所述HSO 4离子簇和样品颗粒之间的反应,从而提供包含HSO 4离子簇的样品簇和 表示要测定的基础样品。
摘要:
The invention relates to devices and methods in mass spectrometers for the generation of ions of heavy molecules, especially biomolecules, by bombarding them with uncharged clusters of molecules. The analyte ions which are generated or released by cluster bombardment of analyte substances on the surface of sample support plates show a broad distribution of their kinetic energies, which prevents good ion-optical focusing. In the invention, the kinetic energies are homogenized in a higher-density collision gas. The collision gas is preferably located in an RF ion guide, more preferably an RF ion funnel, which can transfer the ions to the mass analyzer. The collision gas may be introduced with temporal pulsing, coordinated or synchronized with the pulsed supersonic gas jet. The collision gas may be pumped off again before the next supersonic gas pulse. In an advantageous embodiment, the collision gas can originate from the supersonic gas jet itself.
摘要:
An anion generating and electron capture dissociation apparatus using cold electrons, which comprises a cold electron generation module configured to generate a large quantity of cold electrons from ultraviolet photons radiated into a mass spectrometer vacuum chamber which is in a high vacuum state has a plurality of ultraviolet diodes configured to emit the ultraviolet photons in the mass spectrometer vacuum chamber. Micro-channel plate (MCP) electron multiplier plates induce and amplify initial electron emissions of the ultraviolet photons from the ultraviolet diodes, and generate a large quantity of electron beams from a rear plate. An electron focusing lens is configured to focus the electron beams amplified through the MCP electron multiplier plates. A grid is configured to adjust energy and an electric current of the electron beams together with the electron focusing lens.
摘要:
An apparatus for focusing and for storage of ions and an apparatus for separation of a first pressure area from a second pressure area are disclosed, in particular for an analysis apparatus for ions. A particle beam device may have at least one of the abovementioned apparatuses. A container for holding ions and at least one multipole unit are provided. The multipole unit has a through-opening with a longitudinal axis as well as a multiplicity of electrodes. A first set of the electrodes is at a first radial distance from the longitudinal axis. A second set of the electrodes is in each case at a second radial distance from the longitudinal axis. The first radial distance is less than the second radial distance. Alternatively or additionally, the apparatus may have an elongated opening with a radial extent. The opening has a longitudinal extent which is greater than the radial extent.
摘要:
An analytical apparatus (1) for mass spectrometry comprises an electron impact ioniser including an electron emitter (22) and an ionisation target zone (18). The target zone (18) is arranged to be populated with matter to be ionised for analysis. An electron extracting element (36) is aligned with an electron pathway (34) defined between the electron emitter (22) and the ionisation target zone (18). The electron extracting element (36) is configured to accelerate electrons away from the emitter (22) along the electron pathway (34) between the emitter (22) and the extracting element (36) and to decelerate the electrons along the electron pathway (34) between the extracting element (36) and the ionisation target zone (18) to enable soft ionisation while avoiding the effects of coulombic repulsion at the electron source (22).
摘要:
The invention provides a method and system for analyzing a gas for the presence of a reactant compound via reaction of primary ions of a specific type. A source gas is introduced to a reaction chamber and ionized in this chamber. The pressure in the reaction chamber is adjusted to avoid the formation of protonated species and other impurities. The primary ions generated in the reaction chamber are transferred to a drift tube. The gas to be analyzed is diluted with a carrier gas and the resulting mixture is introduced into the drift tube. The ionization energy of the carrier gas is equal to or higher than the ionization energy of the primary ions. The product ions resulting in the drift tube from a reaction of the primary ions with the reactant present in the gas to be analyzed are then detected, for example using a mass spectrometer. Preferably, an existing PTR-MS setup is used to perform the method of the present invention.
摘要:
Methods and devices are provided for calibrating the mobility axis of an ion mobility spectrum and determining the mobility characteristic of ion species from an ion mobility spectrum, in particular for calibrating the drift time axis of an ion mobility spectrum acquired by a drift type ion mobility spectrometer (IMS). An ion mobility spectrometer uses an ion source that comprises a first ionization region which is fluidly coupled to a sample source, a second ionization region which is spatially separated from the first ionization region and fluidly coupled to a calibrant reservoir, and electrical means for controlling the transfer of sample ions from the first region into the second ionization region or into a third region of the ion source wherein the third region is fluidly coupled to the first and second ionization region and located closer to a mobility analyzer than the first and second ionization region.
摘要:
A mass spectrometer for producing a primary beam of ions for bombarding a sample under vacuum. The mass spectrometer includes a detector for detecting a secondary beam of ions released from the sample. The primary beam of ions includes water clusters where each water cluster contains between 1 and 10,000 water molecules. The primary beam of ions, in one embodiment, is produced by adiabatic expansion of water vapor. An auxiliary beam of ions for bombarding the sample includes a different species to those of the primary beam of ions.
摘要:
Apparatus and methods are provided that enable the interaction of low energy electrons and positrons with sample ions to facilitate electron capture dissociation (EGO) and positron capture dissociation (PGO), respectively, within multipole ion guide structures.
摘要:
According to some embodiments, systems and methods for surface impact ionization of liquid phase and aerosol samples are provided. The method includes accelerating a liquid or aerosol sample, colliding the sample with a solid collision surface thereby disintegrating the sample into both molecular ionic species (e.g., gaseous molecular ions) and molecular neutral species (e.g., gaseous sample), and transporting the disintegrated sample to an ion analyzer. Some embodiments of the method further comprise discarding the molecular neutral species. Such embodiments transport substantially only the molecular ionic species to the ion analyzer.