Abstract:
A physical layer device for a network device comprises a converter module that selectively converts an n-bit input to an m-bit output based on first and second mapping functions. A scrambler module selectively scrambles the m-bit output. An encoding module receives the m-bit output from the scrambler module and selectively maps the m-bit output based on the first mapping function to X level output signals and the m-bit output based on the second mapping function to Y level output signals, where X and Y are integers greater than one and X is different than Y.
Abstract:
A coder is fed with precoded data such that the absolute value of the running digital sum (RDS) of the code words as produced by the coder is limited. This is achieved by ensuring that in a group of 2 code words, the RDS of the first code word is compensated by the RDS of the second code word. The RDS at the end of the second code word is then zero and the excursions of the RDS from the start of the first code word until the end of the second code word are limited because there are only a limited number of bits that can contribute to an increase of the absolute value of the RDS.
Abstract:
A DVD recording method for recording data onto recording media by using a given coding rule, including: generating two data streams by using a plurality of code mapping variants prepared for coding input data, quasi-randomly selecting one of the plurality of code mapping variants, if absolute DSVs of the two data streams are substantially equal, and converting into recording code sequences, where polarities of said two data streams are inverted with respect to each other; and recording data onto said recording media, based on said recording code sequences.
Abstract:
A method, apparatus and computer program for decoding a data stream. The method comprises the steps of acquiring an analog data signal, determining an initial polarity of the analog data signal, determining a threshold transition level, determining a plurality of transition edges where the analog data signal crosses the threshold transition level, and determining the number of unit intervals between each pair of transition edges. A binary value is assigned to each of the unit intervals, and the binary values are displayed to a user.
Abstract:
The invention concerns a data transmission device comprising a turbo coder (22) comprising an interleaver operating on two interleaving blocks and means (26) for producing symbols from said codes (D, Y1, Y2) supplied by the turbo coder The device comprises means (28) for inserting a synchronising sequence into said symbols at a site having a predetermined relationship position relative to the symbols produced with the codes associated with a common interleaving block.
Abstract:
A signal evaluation device for evaluating a decoded signal of maximum likelihood decoding includes: a differential metric circuit for finding differential metrics; comparators for judging whether a difference of differential metrics exceeds a predetermined threshold; counters for counting respective output pulses of the comparators; and a controller for finding the probability of the differential metrics falling at or below the predetermined threshold, based on the number of measured samples and the number of samples counted by the counters, and processing the probability by arithmetic operations so as to obtain an index of signal evaluation. With this arrangement, signal evaluation devices for evaluating a recording medium or a recording medium driving device can have a simpler structure and can perform evaluations in a plurality of PR modes.
Abstract:
An apparatus and method for modulating and demodulating data to transmit or record the data on a recoding medium. Data is modulated and demodulated into a variable-length code. The modulated data comprises a sync signal adding means for adding a sync signal to a train of codes after adding a minimum run. The demodulated data comprises a sync signal detecting means for detecting, from a train of codes, a sync signal having a pattern that breaks a maximum run, after detecting a minimum run. A SYNC bit inserting section adds a sync signal to a train of codes, after adding a minimum run, where the sync signal has a pattern that breaks a maximum run.
Abstract:
An image coding apparatus provides a run-length encoding unit RLE1 that subjects quantized coefficients which are obtained by quantizing frequency components of an image signal to a variable length coding process by using a run value Run that indicates the number of successive zero coefficients and a level value Lev that indicates a value of a non-zero coefficient following the zero coefficients. The run-length encoding unit RLE1 includes a reordering unit Lreodr for reordering level values Lev; a variable length coder LVLC for coding reordered level values ROLev by using a code table that is selected according to the value of a quantization parameter QP; a reordering unit Rreodr for reordering run values Run from high frequency component of the quantized coefficients to low frequency component; and a variable length coder RVLC for coding reordered run values RORun by using a code table that is selected according to the number of already-processed run values
Abstract:
A 6-bit output code word is generated in response to every 4-bit input code word by referring to a set of encoding tables. The encoding tables contain output code words assigned to input code words, and contain encoding-table designation information accompanying each output code word. The encoding-table designation information designates an encoding table among the encoding tables which is used next to generate an output code word immediately following the output code word accompanied with the encoding-table designation information. The generated output code words are sequentially connected into a sequence of the generated output code words which follows predetermined run length limiting rules (1, k)RLL, where “k” denotes a predetermined natural number between 7 and 12.
Abstract:
The present invention relates to a coding system characterized by various combinations of the following properties: 1) Even parity at the output of d of the precoder; 2) A coding rate of 32/34; 3) At least 9 ones per codeword; 4) No more than 13 consecutive zeros in the stream of encoded data (G=13); 5) No more than 13 consecutive zeros in any run of every-other-bit in the stream of codewords (I=13); 6) For closed error events in y or y′ having squared-distance≦(1 to 1.5)×dmfb2 in the detector, the decoder produces at most 4 corresponding erroneous data bytes; 7) Decoding of a 34 bit codeword may begin when 19 of its bits have been received; 8) If the Viterbi detector 108 outputs Non-Return to Zero (NRZ) symbols, then its output is filtered by (1⊕D^2) before being decoded, but if the Viterbi detector outputs NRZ Inverter (NRZI) symbols, then its output is decoded directly; and 9) The even parity is on NRZ symbols.