Abstract:
There is proposed a charged particle beam apparatus including: a plurality of noise removal filters that remove noise of an electrical signal; a measurement unit that measures the contrast-to-noise ratio after applying one of the noise removal filters; and a determination unit that determines a magnitude relationship between the contrast-to-noise ratio measured by the measurement unit and a threshold value set in advance.
Abstract:
As an aspect for realizing accurate observation, inspection, or measurement of the contact hole with large aspect ratio, a method and a device to scan a second electron beam after scanning a first electron beam to a sample to charge the sample are proposed wherein the beam diameter of the first electron beam is made larger than the beam diameter of the second electron beam.
Abstract:
In a transmission electron microscope detector system, image data is read out from the pixels and analyzed during an image acquisition period. The image acquisition process is modified depending on the results of the analysis. For example, the analyses may indicate the inclusion in the data of an image artifact, such as charging or bubbling, and data including the artifact may be eliminated form the final image. CMOS detectors provide for selective read out of pixels at high data rates, allowing for real-time adaptive imaging.
Abstract:
A method for adjusting or aligning one or more optical elements in a Transmission Electron Microscope (TEM) is disclosed. The TEM is equipped with an objective lens for guiding a beam of electrons to a sample, a diffraction plane in which at least a beam of unscattered electrons is focused and a structure to enhance the Contrast Transfer Function (CTF) which is situated in the diffraction plane or an image thereof.
Abstract:
A charged particle beam apparatus that can achieve both high defect-detection sensitivity and high inspection speed for a sample with various properties in a multi-beam type semiconductor inspection apparatus. The allocation of the primary beam on the sample is made changeable, and furthermore, the beam allocation for performing the inspection at the optimum inspection specifications and at high speed is selected based on the property of the sample. In addition, many optical parameters and apparatus parameters are optimized. Furthermore, the properties of the selected primary beam are measured and adjusted.
Abstract:
Gas is supplied from positive pressure (105 Pa or more) to an analyzer of high vacuum (10−2 Pa or less) precisely and stably, while keeping conditions constant and replicating the conditions, and performing switching to a desired gas within a short time. According to a gas introducing device and a method, a plurality of types of gases are synthesized in a mixing chamber, the synthesized gas is introduced and is decompressed by a decompression pump to a pressure ranging from 0.1 Pa to 0.1 MPa, and the decompressed gas is introduced to a gas analyzer through a switching operation using a gas switching valve.
Abstract:
A technique executes autofocus adjustment stably even when a plurality of patterns or foreign matter capable of being imaged only by a specific detector are included independently. Such an image as a concavo-convex image having a weak contrast can be picked up. The technique can automatically focus such an image even when it is difficult to find a focus position in the image. A scanning electron microscope includes a plurality of detectors for detecting secondary signals from a specimen when irradiated with an electron beam, and a calculation unit for combining the signals obtained from the detectors. At least two of the detectors are provided to be symmetric with respect to the electron beam. The focus of the electron beam is adjusted based on the signals of the detectors or on a signal corresponding to a combination of the signals.
Abstract:
The present invention provides a charged particle beam device in which the change of expansion/contraction of a specimen which is an observing object is restricted thereby eliminating position deviation of the observing object and significantly increasing its throughput. The present invention includes specimen holding means for holding a specimen, temperature regulation means which can regulate the temperature of the specimen, and temperature regulation means control means which can control the temperature regulation means based on various conditions.
Abstract:
An electro-optical inspection apparatus is provided that is capable of preventing adhesion of dust or particles to the sample surface as much as possible. A stage (100) on which a sample (200) is placed is disposed inside a vacuum chamber (112) that can be evacuated to vacuum, and a dust collecting electrode (122) is disposed to surround a periphery of the sample (200). The dust collecting electrode (122) is applied with a voltage having the same polarity as a voltage applied to the sample (200) and an absolute value that is the same or larger than an absolute value of the voltage. Thus, because dust or particles such as particles adhere to the dust collecting electrode (122), adhesion of the dust or particles to the sample surface can be reduced. Instead of using the dust collecting electrode, it is possible to form a recess on a wall of the vacuum chamber containing the stage, or to dispose on the wall a metal plate having a mesh structure to which a predetermined voltage is applied. In addition, adhesion of dust or particles can be further reduced by disposing a gap control plate (124) having a through hole (124a) at the center above the sample (200) and the dust collecting electrode (122).
Abstract:
In a transmission electron microscope detector system, image data is read out from the pixels and analyzed during an image acquisition period. The image acquisition process is modified depending on the results of the analysis. For example, the analyses may indicate the inclusion in the data of an image artifact, such as charging or bubbling, and data including the artifact may be eliminated form the final image. CMOS detectors provide for selective read out of pixels at high data rates, allowing for real-time adaptive imaging.