Abstract:
A scanning transmission electron microscope (STEM) has an electron source for generating a primary electron beam and an electron illuminating lens system for converging the primary electron beam from the electron source onto a specimen for illumination. An electron deflecting system is provided for scanning the specimen with the primary electron beam. The STEM also has a scattered electron detector for detecting scattered electrons transmitted through the specimen. A projection lens system projects the scattered electrons onto a detection surface of the scattered electron detector. An image displaying device displays the scanning transmission electron microscope image of the specimen using a detection signal from the scattered electron detector. A detection angle changing device for establishes the range of the scattering angle of the scattered electrons detected by the scattered electron detector. This structure enhances the contrast of a desired portion of the specimen under observation for a scanning transmitted image by selective establishment of detection angle ranges for the scattered electron detector.
Abstract:
An improved objective lens for a charged particle beam device is constituted by, among other things, a magnetic lens that creates a first magnetic field for focussing the charged particle beam onto the specimen. Furthermore, a deflector is integrated into the magnetic lens by providing at least one additional coil arrangement that creates a second magnetic field used to deflect the charged particle beam. Thereby, the second magnetic field is guided through at least one of the pole pieces of the magnetic lens. The present invention also provides an improved column for a charged particle beam device including the improved objective lens.
Abstract:
Methods and apparatus for implanting ions in a workpiece, such as a semiconductor wafer, include generating an ion beam, measuring parallelism of the ion beam, adjusting the ion beam for a desired parallelism based on the measured parallelism, measuring a beam direction of the adjusted ion beam, orienting a workpiece at an implant angle referenced to the measured beam direction and performing an implant with the workpiece oriented at the implant angle referenced to the measured beam direction. The implant may be performed with a high degree of beam parallelism.
Abstract:
Hollow-beam apertures and methods for using same are disclosed, especially for achieving alignment of the beam center with the center of the hollow-beam aperture. The hollow-beam apertures define beam-transmissive portions (e.g., through-holes) that form a hollow beam propagating downstream of the hollow-beam aperture. Also included is a relatively thick region that causes absorption of at least a portion of the incident beam and may also cause localized scattering of the beam. Absorption of charged particles generates an electrical current that can be measured. From such current measurements accompanying controlled displacement of the incident beam, a measurement of the lateral beam-intensity distribution can be obtained. I.e., the current typically is maximal whenever the beam center is aligned with the center of the hollow-beam aperture. Lateral beam adjustment can be achieved using an aligner (deflector assembly).
Abstract:
Charged-particle beam pattern transfer apparatus and charged-particle beam optical systems are disclosed. A representative charged-particle beam pattern transfer apparatus comprises a projection lens that images patterns from a mask onto a substrate. To reduce off-axis image aberrations, especially anisotropic coma and astigmatism, deflectors are provided that produce a magnetic field such that the effective optical axis of the lenses is along a straight line that is tilted with respect to the mask and the substrate. Focus correctors are provided that produce a magnetic field that corrects image focus. Mathematical descriptions of these magnetic fields are disclosed. With such magnetic fields, the charged-particle beam that irradiates a central region of a subfield on the mask propagates along a straight-line axis through the projection lens, reducing deflection aberration and improving image quality.
Abstract:
An image transferring apparatus using a charged particle beam comprising a projection lens for transferring a pattern formed on a mask onto a target by focusing a charged particle beam passing perpendicularly through the mask, and a deflector for deflecting the charged particle beam passing through the mask toward a predetermined direction (x-axis direction) so that a transfer position of the pattern to the target is changed. In this apparatus, the deflector comprises a deflection coil for generating a deflection magnetic field extending in a direction (y-axis direction) perpendicular to the predetermined direction, and correction coils for generating correction magnetic fields extending in the same direction as the deflection magnetic field at areas spaced apart from the center of the deflection magnetic field along the direction (x-axis direction) perpendicular to the direction of the deflection magnetic field.
Abstract:
An arrangement and a process for adjusting imaging systems for bundles of charged particles, or for adjusting spectrometers for bundles of charged particles, are indicated, in which arrangement and process electric and/or magnetic correcting elements are used, which possess, in every case, a large number of electrodes and/or current conductors, which are arranged, symmetrically or asymmetrically, around the optical axis of the particle bundle, these electrodes being at potentials such that the resulting potentials V (r, .PHI.) at an azimuth angle (.PHI.) to a cylindrical surface at a radius (r) around an optical axis (Z) can be represented as the sum of V.sub.1 and V.sub.2, or, as the case may be, these current conductors carrying currents such that the magnitudes of the resulting currents I (r, .PHI.) at the azimuth angle (.PHI.), as defined above, can be represented as the sum of I.sub.1 and I.sub.2. The expressions V.sub.1, V.sub.2 and I.sub.1, I.sub.2 can, in their turn, be represented as sums, their addends being, respectively, of the type V.sub.1 =V.sub.1k sink.PHI., V.sub.2 =V.sub.2k cosk.PHI., and I.sub.1 =I.sub.1k sink.PHI. and I.sub.2 =I.sub.2k cosk.PHI., where k=1, 2, . . . P, with P representing the order of the multipole. The potentials and/or the currents are utilized, in this manner, to obtain superpositions of electric and/or magnetic dipoles, quadrupoles, hexapoles, etc.
Abstract:
A method and system for improved focusing and registration in an electron beam device including an electron beam source, condenser lenses, deflection coils, projection lenses, a mask and a target. The deflection coils are located between second and final condenser lenses and deflect the focused electron beam onto a projection mark on the mask and onto a similar registration mark on the target to provide superimposed images for registration purposes.