Abstract:
The present disclosure significantly reduces the waiting time from inserting a specimen holder into an electron microscope until high quality data acquisition is possible. Characterizing the present disclosure, it is a specimen holder partly made of low thermal expansion material. The low thermal expansion material can be any of group 4, 5 or 6 in the periodic table of the elements.
Abstract:
Systems and methods of an ion implant apparatus include an ion source for producing an ion beam along an incident beam axis. The ion implant apparatus includes a beam deflecting assembly coupled to a rotation mechanism that rotates the beam deflecting assembly about the incident beam axis and deflects the ion beam. At least one wafer holder holds target wafers and the rotation mechanism operates to direct the ion beam at one of the at least one wafer holders which also rotates to maintain a constant implant angle.
Abstract:
A shielding member for a charged particle beam apparatus includes a conductive substrate; and a through hole extending through the conductive substrate. The conductive substrate is comprised of a material having a specific electrical resistivity in a range from about 106 Ωcm to about 1012 Ωcm.
Abstract:
Systems and methods of an ion implant apparatus include an ion source for producing an ion beam along an incident beam axis. The ion implant apparatus includes a beam deflecting assembly coupled to a rotation mechanism that rotates the beam deflecting assembly about the incident beam axis and deflects the ion beam. At least one wafer holder holds target wafers and the rotation mechanism operates to direct the ion beam at one of the at least one wafer holders which also rotates to maintain a constant implant angle.
Abstract:
A system and method for mitigating contamination in an ion implantation system is provided. The system comprises an ion source, a power supply operable to supply power to a filament and mirror electrode of the ion source, a workpiece handling system, and a controller, wherein the ion source is selectively tunable via the controller to provide rapid control of a formation of an ion beam. The controller is operable to selectively rapidly control power to the ion source, therein modulating a power of the ion beam between an implantation power and a minimal power in less than approximately 20 microseconds based, at least in part, to a signal associated with a workpiece position. Control of the ion source therefore mitigates particle contamination in the ion implantation system by minimizing an amount of time at which the ion beam is at the implantation current.
Abstract:
A shielding system for a physical vapor deposition chamber having a sputter target above the pedestal. The shielding system comprises a pedestal shield attachable to the pedestal and movable therewith. The pedestal shield surrounds and extends outward from the pedestal toward the chamber side or lower walls. The system also comprises a sidewall shield adapted to extend substantially around and within the chamber sidewalls, and downward from an upper portion thereof. The sidewall shield has a lower end extending inward and disposed adjacent the pedestal shield upper portion when the pedestal is in the raised position. The pedestal shield and sidewall shield cooperate, when the pedestal is in the raised position, to prevent line-of-sight deposition transmission from the sputter target to the side and lower walls of the deposition chamber.
Abstract:
An apparatus includes a housing defining a chamber in which an electric field is generated, and an internal member provided in the chamber. At least one part of the internal member is formed of a dielectric material. A process is executed in the chamber so that a dielectric deposit is formed on the at least one part of the internal member. An m1(d∈1/dm1) value of the dielectric material and ∈n m2(d∈2/dm2) value of the dielectric deposit are set so that production of particles from the deposit is properly controlled. The term m1 is a mass density of the dielectric material, ∈1 is a permittivity of the dielectric material, m2 is a mass density of the dielectric deposit, and ∈2 is a permittivity of the dielectric deposit.
Abstract:
An ion implantation system includes an ion source configured to provide an ion beam, a terminal structure defining a cavity, the ion source at least partially disposed within the cavity, and an insulator system. The insulator system is configured to electrically insulate the terminal structure and is configured to provide an effective dielectric strength greater than about 72 kilovolts (kV)/inch in a region proximate at least one exterior surface of the terminal structure. A gas box insulator system to electrically insulate a gas box of the ion implantation system is also provided.
Abstract:
A specimen holding device has a plurality of electrodes, and a moving mechanism for moving upward and downward a part of the plurality of electrodes. Further, the moving mechanism moves the part of the plurality of electrodes downward to evacuate from a path through which a specimen is introduced. Further, the specimen holding device has a positioning member for the specimen so that the specimen is positioned after being mounted.
Abstract:
A system, method, and apparatus for mitigating contamination during ion implantation are provided. An ion source, end station, and mass analyzer positioned between the ion source and the end station are provided, wherein an ion beam is formed from the ion source and travels through the mass analyzer to the end station. An ion beam dump assembly comprising a particle collector, particle attractor, and shield are associated with the mass analyzer, wherein an electrical potential of the particle attractor is operable to attract and constrain contamination particles within the particle collector, and wherein the shield is operable to shield the electrical potential of the particle attractor from an electrical potential of an ion beam within the mass analyzer.