Abstract:
Compositions and methods of producing discrete nanotubes and nanoplates and a method for their production. The discrete nanotube/nanoplate compositions are useful in fabricated articles to provide superior mechanical and electrical performance. They are also useful as catalysts and catalyst supports for chemical reactions.
Abstract:
A honeycomb structure includes a pillar-shaped honeycomb structure body including porous partition walls defining and forming a plurality of cells which extend from an inflow end face to an outflow end face, and a porous outer wall surrounding the partition walls, a porous supporting bulge disposed to extend out from a circumference of the outer wall so that at least a part of the outer wall is exposed, and plugging portions arranged in open ends of the cells, and the supporting bulge has support portions and a side wall portion, and the partition walls and the outer wall of the honeycomb structure body and the support portions and the side wall portion of the supporting bulge are all formed monolithically by formation of a ceramic raw material.
Abstract:
The present invention relates to non-metallic interference pigments, in particular laminar interference pigments, which comprise a thin high-refractive layer and an outermost layer that contains crystalline carbon in the form of graphite and/or graphene. The invention also relates to a method for producing such pigments and the use of the thus produced pigments.
Abstract:
A method of producing, from a continuous or discontinuous (e.g., chopped) carbon fiber, partially to fully converted metal carbide fibers. The method comprises reacting a carbon fiber material with at least one of a metal or metal oxide source material at a temperature greater than a melting temperature of the metal or metal oxide source material (e.g., where practical, at a temperature greater than the vaporization temperature of the metal or metal oxide source material). Additional methods, various forms of carbon fiber, metal carbide fibers, and articles including the metal carbide fibers are also disclosed.
Abstract:
An article comprises a first member comprising a first carbon composite; and a second member disposed on the first member and comprising a second carbon composite and a reinforcing agent, wherein the second member has a gradient in the weight ratio of the second carbon composite to the reinforcing agent, and wherein the first member has one or more of the following properties different than those of the second member: elasticity; corrosion resistance; erosion resistance; or hardness.
Abstract:
An alumina sintered body according to the present invention has a degree of c-plane orientation of 90% or more as determined by Lotgering's method from an X-ray diffraction profile obtained by irradiating a plate surface with X-rays in a range of 2θ=20° to 70°. The alumina sintered body has no pores when a cross-sectional surface formed in a direction perpendicular to the plate surface is polished using an Ar+ ion beam and a mask and is examined under a scanning electron microscope at a magnification of 5,000 times. The alumina sintered body has a total mass fraction of impurity elements other than Mg and C of 100 ppm or less. This alumina sintered body has a high degree of orientation, high density, and high purity and thus has a higher optical translucency than those known in the art.
Abstract:
A method for producing a transparent alumina sintered body includes (a) the step of preparing an alumina raw material powder containing a plate-like alumina powder having an aspect ratio of 3 or more so that the mass ratio R1 of F to Al in the alumina raw material powder is 5 ppm or more, and forming a compaction raw material containing the alumina raw material powder into a compact, and (b) the step of pressure-sintering the compact at a temperature at which F evaporate to yield a transparent alumina sintered body.
Abstract:
96 parts by mass of a γ-alumina powder, 4 parts by mass of a an AlF3 powder, and 0.17 parts by mass of an α-alumina powder as a seed crystal were mixed by a pot mill. The purities of each raw material were evaluated, and it was found that the mass ratio of each impurity element other than Al, O, F, H, C, and S was 10 ppm or less. In a high-purity alumina-made sagger having a purity of 99.9 percent by mass, 300 g of the obtained mixed powder was received, and after a high-purity alumina-made lid having a purity of 99.9 percent by mass was placed on the sagger, a heat treatment was perforated at 900° C. for 3 hours in an electric furnace in an air flow atmosphere, so that an alumina powder was obtained. The value of AlF3 mass/container volume was 0.016 g/cm3.
Abstract:
An inorganic filler included in an epoxy resin composition includes a coating layer formed on a surface thereof, and the surface of the coating layer includes at least two elements selected from the group consisting of C, N and O.
Abstract:
Compositions and methods of producing discrete nanotubes and nanoplates and a method for their production. The discrete nanotube/nanoplate compositions are useful in fabricated articles to provide superior mechanical and electrical performance. They are also useful as catalysts and catalyst supports for chemical reactions.