Abstract:
Methods for ablating tissue in a patient having atrial fibrillation comprise advancing an elongate flexible shaft through a patient's vasculature into a chamber of a heart. The elongate flexible shaft has an energy source and a sensor. Tissue in the heart is scanned with the sensor and data about the tissue is captured. The captured data is grouped into one of a plurality of tissue classifications and an anatomical map of the tissue showing the grouped data is displayed. At least a portion of the tissue is ablated so as to form a conduction block that blocks aberrant electrical pathways in the heart. The ablated tissue is grouped into one or more predefined tissue classifications during or prior to the ablation.
Abstract:
Methods and systems for noninvasive mastopexy through deep tissue tightening with ultrasound are provided. An exemplary method and system comprise a therapeutic ultrasound system configured for providing ultrasound treatment to a deep tissue region, such as a region comprising muscular fascia and ligaments. In accordance with various exemplary embodiments, a therapeutic ultrasound system can be configured to achieve depth from 1 mm to 4 cm with a conformal selective deposition of ultrasound energy without damaging an intervening tissue in the range of frequencies from 1 to 15 MHz. In addition, a therapeutic ultrasound can also be configured in combination with ultrasound imaging or imaging/monitoring capabilities, either separately configured with imaging, therapy and monitoring systems or any level of integration thereof.
Abstract:
An ultrasound system used for both imaging and delivery high intensity ultrasound energy therapy to treatment sites and a method for treating tumors and other undesired tissue within a patient's body with an ultrasound device. The ultrasound device has an ultrasound transducer array disposed on a distal end of an elongate, relatively thin shaft. In one form of the invention, the transducer array is disposed within a liquid-filled elastomeric material that more effectively couples ultrasound energy into the tumor, that is directly contacted with the device. Using the device in a continuous wave mode, a necrotic zone of tissue having a desired size and shape (e.g., a necrotic volume selected to interrupt a blood supply to a tumor) can be created by controlling at least one of the f-number, duration, intensity, and direction of the ultrasound energy administered. This method speeds the therapy and avoids continuously pausing to enable intervening normal tissue to cool.
Abstract:
An ultrasound system used for both imaging and delivery high intensity ultrasound energy therapy to treatment sites and a method for treating tumors and other undesired tissue within a patient's body with an ultrasound device. The ultrasound device has an ultrasound transducer array disposed on a distal end of an elongate, relatively thin shaft. In one form of the invention, the transducer array is disposed within a liquid-filled elastomeric material that more effectively couples ultrasound energy into the tumor, that is directly contacted with the device. Using the device in a continuous wave mode, a necrotic zone of tissue having a desired size and shape (e.g., a necrotic volume selected to interrupt a blood supply to a tumor) can be created by controlling at least one of the f-number, duration, intensity, and direction of the ultrasound energy administered. This method speeds the therapy and avoids continuously pausing to enable intervening normal tissue to cool.
Abstract:
Ultrasound applicators able to both image a treatment site and administer ultrasound therapy include an array of transducer elements that can be focused. In several embodiments, an electronically phased array is used for controlling the focal point of an ultrasound beam. The ultrasound beam produced thereby can also be electronically steered. To reduce the quality factor or Q of the array when the array is used for imaging, an electronic switch is selectively closed, placing a resistance in parallel with each of the array elements. A flexible array is employed in several embodiments and is selectively bent or flexed to vary its radius of curvature and thus control the focal point and/or a direction of focus of the array. In another embodiment, each of the transducer elements comprising the array are individually mechanically pivotable to steer the ultrasonic beam produced by the transducer elements.
Abstract:
Disclosed herein are the systems, devices and methods for treating cancer and metastasis using low energy immune priming. The low energy immune priming includes administering immunopriming energy. The low energy immune priming can be combined with an adjunct therapy.
Abstract:
Transrectal ultrasound probe for boiling histotripsy ablation of prostate are presented herein. In one embodiment, a method for a transrectal ultrasound treatment uses high intensity focused ultrasound (HIFU). The method includes: generating a boiling histotripsy (BH) therapy ultrasound by a therapy transducer in a frequency range of 1 MHz to 2.8 MHz and a surface intensity range of 10 W/cm2 to 80 W/cm2. The therapy transducer may be about 50 mm long and about 35 mm wide. The method also includes applying the therapy ultrasound by directing ultrasound pulses having ultrasound shock waves to a target tissue at a focal depth of 2.5 cm to 5.5 cm; generating at least one μm-scale vapor bubble at a target region; growing the at least one vapor bubble to at least one mm-scale bubble; and mechanically disintegrating a surrounding tissue by interactions between mm-scale bubbles and the ultrasound shock waves within a pulse.
Abstract:
Various approaches for focusing an ultrasound transducer having multiple transducer elements include causing the transducer elements to transmit ultrasound waves to a first one or more target regions and measure reflections of the ultrasound waves off the first one or more target regions; and based at least in part on the measured reflections, determining a parameter value associated with at least one of the transducer elements so as to generate an ultrasound focus at a second target region, different from the first one or more target regions.
Abstract:
Methods and systems confirm the treatment focus location of ultrasound energy to be delivered to a patient from a plurality of transducers. The location of focus of treatment ultrasound may be confirmed prior to the start of ultrasound therapy. In some embodiments, ultrasound therapy may comprise delivering treatment ultrasound energy from the treatment ultrasound transducers through the skull to the brain of a patient. Methods for confirming the treatment ultrasound focus location comprise determining receive focus profiles ϕx,vi for particular candidate three-dimensional (3D) treatment focus locations and particular assumed ultrasound propagation velocity profiles; performing a pre-treatment (e.g. low-power) ultrasound transmission into the brain of the patient; receiving return signals; and determining the location of treatment focus based at least in part on the received return signals and the receive focus profiles ϕx,vi.
Abstract:
Embodiments of the present disclosure relate to techniques for facilitating personalized neuromodulation treatment protocols. In one embodiment, a predetermined treatment position of an energy application device is used to guide future treatments for the patient. In one embodiment, a position of the energy application device relative to the predetermined treatment position is determined. In one embodiment, a total dose of ultrasound energy applied to the region of interest is determined.