Abstract:
A method and system for non-ablative acne treatment and prevention is disclosed. The method utilizes ultrasound energy which is targeted at a region of interest to treat existing acne and prevent future acne from forming. The application of ultrasound energy causes numerous physiological effects that treat acne. Some of these physiological effects comprise reducing sebum, increasing perfusion at the region of interest, denaturing proteins at the region of interest, creating an uninhabitable environment at the region of interest, initiating programmed cell death at the region of interest and the initiation of mechanical effects at the region of interest.
Abstract:
Various embodiments provide methods and systems for ultrasound treatment of tissue are provided. Accordingly, a method can include locating an implant in a site in a body, directing a medicant to at least one of the implant and the site, directing ultrasound energy to the site, and accelerating healing of the implant and/or native tissue at the site.
Abstract:
This invention provides methods and systems uniquely capable of enhancing medicant delivery and/or effectiveness through the use of energy to predictably disrupt membranes and mechanically and thermally modulate cells and tissues. In exemplary embodiments, the methods and systems disclosed herein are capable of modulating multiple layers of tissue. In an exemplary embodiment, the energy is acoustic energy (e.g., ultrasound). In other exemplary embodiments, the energy is photon based energy (e.g., IPL, LED, laser, white light, etc.), or other energy forms, such radio frequency electric currents, or various combinations of acoustic energy, electromagnetic energy and other energy forms or energy absorbers such as cooling. Medicants can be first introduced to the region of interest by diffusion, circulation, and/or injection. An exemplary system for enhancing medicant delivery and/or effectiveness comprises a control system, a probe, and a display or indicator system. Imaging and/or monitoring may alternatively be coupled and/or co-housed with an ultrasound system contemplated by the present invention.
Abstract:
A method and system for ultrasound treatment utilizing a multi-directional transducer to facilitate treatment, such as therapy and/or imaging or other tissue parameter monitoring, in two or more directions. In accordance with an exemplary embodiment, a multi-directional transducer comprises at least two transduction elements configured to provide for ultrasound energy, such as radiation, acoustical energy, heat energy, imaging, positional information and/or tissue parameter monitoring signals in two or more directions. The transduction elements can comprise various materials for providing ultrasound energy or radiation, such as piezoelectric materials, with and without matching layers. In addition, the transduction elements can be configured for substantially uniform, focused and/or defocused radiation patterns, as well as for single, multiple-element and/or multiple-element array configurations. In addition, an exemplary multi-directional transducer can comprise multiple elements, either side by side, stacked or in an array.
Abstract:
A method and system for treating tissue with a combined therapy profile is disclosed. In one exemplary embodiment, ultrasound energy is used to treat numerous depths of tissue within a region of interest and the spatial and temporal properties of the ultrasound energy are varied for more effective treatment. The method and system of the present invention are configured to treat all of the tissue from the surface on down and not spare intervening tissue.
Abstract:
An exemplary system for coupling acoustic energy using an encapsulated coupler member comprises a display or indicator, a control system, a probe, and a coupler member. This invention provides a coupler member adjustably configured to perform at least one of (i) providing a standoff, (ii) focusing or defocusing energy, and (iii) coupling energy. An exemplary gel coupler member is configured to hold the shape of a lens geometry. In one aspect of the present invention, gel coupler member comprises water, glycerol, and polyvinyl alcohol, and exhibits an increased desiccation time and shelf life when compared to the prior art. The probe can comprise various probe and/or transducer configurations. In an exemplary embodiment, the probe delivers focused, unfocused, and/or defocused ultrasound energy to the region of interest. Imaging and/or monitoring may alternatively be coupled and/or co-housed with an ultrasound system contemplated by the present invention.
Abstract:
A non-invasive visual imaging system is provided, wherein the imaging system procures an image of a transducer position during diagnostic or therapeutic treatment. In addition, the system suitably provides for the transducer to capture patient information, such as acoustic, temperature, or ultrasonic images. For example, an ultrasonic image captured by the transducer can be correlated, fused or otherwise combined with the corresponding positional transducer image, such that the corresponding images represent not only the location of the transducer with respect to the patient, but also the ultrasonic image of the region of interest being scanned. Further, a system is provided wherein the information relating to the transducer position on a single patient may be used to capture similar imaging planes on the same patient, or with subsequent patients. Moreover, the imaging information can be effectively utilized as a training tool for medical practitioners.
Abstract:
Various embodiments provide methods and systems for ultrasound treatment of tissue are provided. Accordingly, a method can include locating an implant in a site in a body, directing a medicant to at least one of the implant and the site, directing ultrasound energy to the site, and accelerating healing of the implant and/or native tissue at the site.
Abstract:
Methods for ultrasound treatment of hyperhidrosis are provided. Various methods and systems for targeted treatment of sweat glands can be configured in various manners, such as through use of therapy only, therapy and monitoring, imaging and therapy, or therapy, imaging, and monitoring, and/or through use of focused, unfocused, or defocused ultrasound through control of various spatial and temporal parameters. As a result, thermal and/or ablative energy can be deposited at the particular depth at which the sweat gland population is located below the skin surface. Ultrasound and non-ultrasound treatments for hyperhidrosis are provided.
Abstract:
An ultrasound medical treatment system includes an end effector insertable into a patient. The end effector includes a tissue-retaining device. The tissue-retaining device includes a first tissue-retaining member having an ultrasound medical-treatment transducer and includes a second tissue-retaining member. The first and second tissue-retaining members are operatively connected together to retain patient tissue between the first and second tissue-retaining members and to release patient tissue so retained. In one example, the second tissue-retaining member has an ultrasound reflector. In the same or a different example, the ultrasound medical-treatment transducer is an ultrasound imaging and medical-treatment transducer.