Abstract:
Systems and methods for cavitation-guided opening of a targeted region of tissue within a primate skull are provided. In one example, a method includes delivering one or more microbubbles to proximate the targeted region, applying an ultrasound beam, using a transducer, through the skull of the primate to the targeted region to open the tissue, transcranially acquiring acoustic emissions produced from an interaction between the one or more microbubbles and the tissue, and determining a cavitation spectrum from the acquired acoustic emissions.
Abstract:
A therapeutic apparatus for therapeutic ultrasonic treatment of a tissue region that contains a flowing liquid has at least one ultrasonic source and a control unit for activating the ultrasonic source in order to radiate ultrasonic pulses according to a pulse parameter set into the tissue region. The therapeutic apparatus has a measuring system configured to determine a flow velocity of the liquid and a focus control system configured to move a focus region of the ultrasonic pulse relative to the tissue region over a longitudinal portion. A movement direction of the focus region therein corresponds to a flow direction of the liquid and a movement velocity of the focus region corresponds to the flow velocity.
Abstract:
A histotripsy therapy system configured for the treatment of tissue is provided, which may include any number of features. Provided herein are systems and methods that provide efficacious non-invasive and minimally invasive therapeutic, diagnostic and research procedures. In particular, provided herein are optimized systems and methods that provide targeted, efficacious histotripsy in a variety of different regions and under a variety of different conditions without causing undesired tissue damage to intervening/non-target tissues or structures.
Abstract:
This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
Abstract:
A system, device and method for removing occlusive material from a bodily lumen comprising a catheter with a distally mounted and fluid-fillable litho-cushion in operative connection with at least one forward-focusing reflector. The catheter comprises a lumen with an electrode pair housing disposed in watertight engagement with the lumen at or near the distal end of the lumen, the electrode pair housing comprising at least one electrode pair. The at least one electrode pair is in wired communication with a pulse generator, wherein the electrode pair is configured to generate an electrical arc between the electrodes of the electrode pair with subsequent generation of a shock wave. The shock wave is directed distally out of the catheter lumen and focused forward and distally away from the catheter lumen by the at least one reflector toward the targeted occlusive material.
Abstract:
A method and system for secure ultrasound treatment of living tissues using an ultrasound probe comprising a reflective cavity in acoustic communication with living tissues, a transducer to emit an ultrasound wave in the reflective cavity and a transducer to acquire a backscattered signal in the reflective cavity. The method comprises the steps of a) emitting a first ultrasound wave in the reflective cavity that generates a backscattered ultrasound wave in the reflective cavity, b) acquiring a backscattered signal in the reflective cavity, c) determining whether an insonification can be safely performed by computing a similarity value between the backscattered signal and a predefined reference signal, and d) if an insonification can be safely performed, treating the living tissues with a second ultrasound wave emitted in the reflective cavity. The second ultrasound wave is focused a target point of the living tissues and generates a pressure pulse resulting in cavitation at this target point
Abstract:
An ultrasound catheter system and a method for operating an ultrasonic catheter at a treatment site within a patient's vasculature or tissue are disclosed. The ultrasound catheter system comprises a catheter having at least one ultrasonic element and a control system configured to generate power parameters that drive the at least one ultrasonic element to generate ultrasonic energy. The control system is configured to vary at least one of the power parameters and at least one physiological parameter by repeatedly cycling the power parameter and the physiological parameter through two set of values.
Abstract:
An ultrasonic HIFU transducer (120) has a threaded opening into which a modular cavitation sensor (90) is removably located. The modular cavitation sensor includes a modular housing (92) containing a piezoelectric transducer for sensing acoustic signals indicative of cavitation. The modular cavitation sensor has electrodes (96,98) which engage spring contacts (112,114) in the threaded opening when the modular housing is screwed into the threaded opening. A damaged sensor can be unscrewed and replaced simply without connectors or soldering.
Abstract:
This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
Abstract:
A method of at least partially removing the nucleus pulposus of an intervertebral disc comprising the nucleus and an annulus surrounding the nucleus is described. The method comprises the steps of: insonating the nucleus with ultrasound thereby to cause at least partial fragmentation of the nucleus; and extracting at least part of the fragmented nucleus. A system for performing the method is also described.