Abstract:
The present disclosure relates generally to thrombectomy devices. An exemplary catheter comprises: a central tube; an emitter assembly mounted over the central tube, wherein the emitter assembly comprises: a conductive sheath; a first insulated wire having a first curved distal portion; and a second insulated wire having a second curved distal portion, wherein the first curved distal portion and the second curved distal portion are positioned within the conductive sheath, and wherein the emitter assembly is configured to generate a plurality of cavitation bubbles or shockwaves when a pulsed voltage is applied to the emitter assembly; and an outer tube housing the emitter assembly, wherein the outer tube is configured to receive a conductive fluid, wherein the outer tube comprises a distal opening for releasing the plurality of cavitation bubbles or shockwaves and the conductive fluid in a forward direction to treat thrombus at a treatment site.
Abstract:
A method of treating a mobile target tissue with a laser beam includes: providing a laser device for generating a laser beam and providing an optical fiber having a delivery end for guiding the laser beam to the target tissue; a controller causes the laser device to generate one or more laser pulses substantially along the same longitudinal axis. The controller causes the laser device to provide one or more laser pulses. The one or more pulses are selected to allow a vapor bubble formed by the one or more pulse to expand an amount sufficient to displace a substantial portion of the liquid medium from the space between the delivery end of the fiber and the target tissue. The one or more pulses are delivered to the target tissue through the vapor bubble after the vapor bubble has reached its maximum extent and has begun to collapse to reduce retropulsion of the mobile target tissue.
Abstract:
This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
Abstract:
A method of treating a mobile target tissue with a laser beam includes: providing a laser device for generating a laser beam and providing an optical fiber having a delivery end for guiding the laser beam to the target tissue; a controller causes the laser device to generate one or more laser pulses substantially along the same longitudinal axis. The controller causes the laser device to provide one or more laser pulses. The one or more pulses are selected to allow a vapor bubble formed by the one or more pulse to expand an amount sufficient to displace a substantial portion of the liquid medium from the space between the delivery end of the fiber and the target tissue. The one or more pulses are delivered to the target tissue through the vapor bubble after the vapor bubble has reached its maximum extent and has begun to collapse to reduce retropulsion of the mobile target tissue.
Abstract:
Methods of and systems for monitoring—via an ultrasonic imaging device—the delivery of radio-frequency energy are described herein. The articles may be ultrasonically echogenic to assist with guidance.
Abstract:
An example method includes generating an acoustic ultrasound wave that is focused at a focal point. The method further includes sequentially directing the focal point upon distinct portions of an object to form respective shock waves at the distinct portions of the object. The method further includes, via the respective shock waves, causing the distinct portions of the object to boil and form respective vapor cavities. The method further includes causing substantially uniform ablation of a region of the object that comprises the distinct portions. The substantially uniform ablation is caused via interaction of the respective shock waves with the respective vapor cavities. An example ablation system and an example non-transitory computer-readable medium, both related to the example method, are also disclosed.
Abstract:
Ultrasonic sonothrombolysis systems to produce two acoustic pressure levels of insonation during stroke therapy, mid/high acoustic pressure insonation directed to the site of a blood clot where microbubbles are present to induce microbubble-mediated blood clot lysis, and low acoustic insonation directed to the region surrounding the site of the blood clot where microbubbles are present to stimulate microvascular reperfusion of the surrounding tissue. The systems simultaneously produce blood clot lysis at the site of an occlusion and stimulate reperfusion of tissue affected by the occlusion.
Abstract:
A medical system includes a sheath and an acoustic reflective element that is capable of amplifying acoustic energy. Methods of using a medical system are also provided herein.
Abstract:
This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
Abstract:
An apparatus and method for using an ultrasonic medical device to treat chronic total occlusions comprises an ultrasonic probe, a transducer, a coupling engaging a proximal end of the ultrasonic probe to a distal end of the transducer and an ultrasonic energy source engaged to the transducer. The ultrasonic probe is inserted into a vasculature and placed in communication with the chronic total occlusion. The ultrasonic energy source produces an ultrasonic energy that is transmitted to the transducer, where the transducer creates a transverse ultrasonic vibration along the ultrasonic probe. The transverse ultrasonic vibration creates a plurality of transverse nodes and a plurality of transverse anti-nodes along the longitudinal axis of the ultrasonic probe, creating cavitation along a portion of the longitudinal axis of the ultrasonic probe to ablate the chronic total occlusion.