Abstract:
The present invention relates to a sensor, comprising a sensor element and an interconnect. The interconnect is configured to be arranged at the sensor element. The interconnect comprises at least a carrier film provided with metallic layer. The interconnect is configured to provide an electrical connection for the sensor element. Furthermore a device comprising the sensor and a method of manufacturing the sensor is provided.
Abstract:
An ultrasonic inspection probe assembly includes a flexible ultrasonic transducer array located between a backing block and a face layer. The flexible ultrasonic transducer array can be located in the opening of a flexible ultrasonic transducer array frame.
Abstract:
A method for determining a position of an emitter relative to a plurality of receivers is provided. The method includes emitting first and second signals at the emitter and receiving the first and second signals at each receiver of the plurality of receivers. The method also includes steps for establishing a first detected wave of the second signal as a lost wave or a gained wave for each receiver of the plurality of receivers. Detecting lost and gained waves assists with increasing the accuracy of a calculated location of the emitter relative to the plurality of receivers.
Abstract:
An acoustic lens or diffractive acoustic device, including but not limited to, a sub-wavelength thickness lens or diffuser, comprising an array of Helmholtz resonators (HRs) that provide perfect or near-perfect sound transmission through a rigid barrier. HRs are arranged in a line or an array confined within a waveguide and oriented so that one neck protrudes onto each side of the barrier. Extraordinary acoustic transmission (EAT) occurs when radiation (such as EM or acoustic radiation) incident on the barrier perforated with sub-wavelength holes is transmitted at a rate higher than expected based on the areal coverage fraction of the holes. Transmission is independent of the direction of sound on the barrier and the relative placement of the necks.
Abstract:
A wave energy guiding system is described that includes a structural substrate formed according to a folded-pattern topology including, for example, an origami-type folded-pattern topology such as Miura-ori. The structural substrate includes a plurality of planar facets each positionable at an angle relative to adjacent planar facets. Each transducer of the plurality of transducers is positioned on a different one of the plurality of planar facets to form a transducer array. Adjustments to the angle of the adjacent planar facets cause a corresponding adjustment to a performance characteristic of the transducer array. In this way, the performance of the wave-energy guiding system can be adjusted and modified by adjusting the degree to which the structural substrate is folded in the folded-pattern topology.
Abstract:
An acoustic lens or diffractive acoustic device, including but not limited to, a sub-wavelength thickness lens or diffuser, comprising an array of Helmholtz resonators (HRs) that provide perfect or near-perfect sound transmission through a rigid barrier. HRs are arranged in a line or an array confined within a waveguide and oriented so that one neck protrudes onto each side of the barrier. Extraordinary acoustic transmission (EAT) occurs when radiation (such as EM or acoustic radiation) incident on the barrier perforated with sub-wavelength holes is transmitted at a rate higher than expected based on the areal coverage fraction of the holes. Transmission is independent of the direction of sound on the barrier and the relative placement of the necks.
Abstract:
An example component inspection method includes directing a wave from a curved array of transducer elements toward a component. The method forms the wave using focal law calculator software.
Abstract:
A protective enclosure for an electronic device can include a waveguide to direct and enhance sound waves emanating from a speaker of an electronic device when installed in the protective enclosure. The waveguide can include a first end and a second end. The first end of the waveguide can be located proximate the speaker of the electronic device. The waveguide can increase in cross-sectional area between the first end and the second end. The second end of the waveguide can be located proximate a front surface of the protective enclosure and can direct sound waves toward a user of the electronic device.
Abstract:
A system for emitting an ultrasonic signal is provided. The system includes a first ultrasonic transducer and a second ultrasonic transducer. A plate of the first ultrasonic element faces a plate of the second ultrasonic element such that the plate of the first ultrasonic element is spaced apart from the plate of the second ultrasonic element by a gap. During operation of the first and second ultrasonic transducers, a uniform or omnidirectional ultrasonic signal may be emitted from the gap.
Abstract:
An example component inspection method includes directing a wave from a curved array of transducer elements toward a component. The method forms the wave using focal law calculator software.