摘要:
An olefin polymerization catalyst and preparation method and use thereof are provided. The catalyst component comprises (1) an active magnesium halide, (2) a titanium compound containing at least one Ti-halide bond supported thereon, and (3) an electron donor selected from the group consisting of one or more sulfonyl-containing compounds having the following formula. There are two methods for preparing such solid catalyst component: I) treating the active magnesium halide (1) particles with alkylaluminum, subsequently adding the electron donor (3), treating it with the solution of titanium compound (2) one or more times; II) adding spherical magnesium chloride alcoholate particles to the solution of titanium compound (2), subsequently adding the electron donor (3), treating it with the solution of titanium compound (2) one or more times. The catalyst system comprises such solid catalyst component, a co-catalyst (alkylaluminum compound) and an external electron donor.
摘要:
A catalyst for synthesizing 1-hexene from ethylene trimerization and its application are provided. Said catalyst consists of (a) the compound containing P and N, (b) electron donor, (c) Cr compound, (d) carrier and (e) accelerator. The molar ratio of (a), (b), (c), (d) and (e) is 0.5-100:0.5-100:1:0.5-10:50-5000. The catalyst is prepared by mixing the components of (a)-(e) in an ethylene trimerization apparatus in situ and ethylene is introduced into the apparatus continuously. The prepared catalyst can be used to synthesize 1-hexene from ethylene trimerization in the inert solvents. The trimerization is performed at 30-150° C. and 0.5-10.0 MPa for 0.1-4 hours. The catalyst has high catalytic activity and high 1-hexene selectivity. During the process of ethylene trimerization, by-product polyethylene does not stick to the apparatus.
摘要:
The present invention relates to a marine cylinder oil composite additive. Based on the total weight of the composite additive, said marine cylinder oil composite additive comprises: 15-25% sulfonate detergent with superhigh base number, 35-45% phenolate detergent with superhigh base number, 20-30% naphthenate detergent with superhigh base number, 0-8% dispersing agent, 0-4% antiwear agent, and 10-20% Group I base oil with high viscosity index which is selected from the group consisting of 400SN, 500SN and 650SN.
摘要:
Modified molecular sieve characterized by improved sodium-resisting contamination activity and preparation method thereof are provided. The method comprises: adding molecular sieve in phosphorus-containing organic solution, and reacting for 10-200 minutes at temperature of 70-200° C. and pressure of 0.2-1.2 MPa, and then filtering, drying and calcining. The said modified molecular sieve contains 90-99 wt. % molecular sieve as dry basis and 1-10 wt. % phosphorus as oxide. The said method can improve the capability of sodium-resisting contamination effectively, and its technology is simple and fits the existing catalyst production apparatus and process. The said modified molecular sieve has high sodium-resisting contamination activity, and the model catalyst by sodium contamination has high activity retention.
摘要:
Disclosed are a flexible polymer, particles made from same, and a process for preparing the particles. This flexible polymer is obtained from copolymerizing monomer (A) and monomer (B), wherein monomer (A) is one or more water-insoluble unsaturated diene monomers; monomer (B) is at least one compound with the general formula of wherein R is C1-C12alkyl, C1-C12 alkyl aryl, C1-C12 alkyl ether or C1-C12alkyl ester. Monomer (A) is in an amount of 60-90% by weight of the total combined weight of monomer (A) and monomer (B). Monomer (B) is in an amount of 10-40% by weight of the total combined weight of monomer (A) and monomer (B). The flexible polymer particles show excellent flexibility, deformability, elasticity as well as stability. They can be used in oilfields in nearby wellbore profile control and in-depth profile control or as in-depth flooding fluid diverting agents. They can also be applied in water shutoff in high temperature and high salinity production wells; preventing chemical channeling in polymer and ASP (alkali-surfactant-polymer) flooding; temporarily plugging in acidization; huff and puff; and preventing in-depth channeling in steam flooding, loss of circulation control and filtration control, and the like.
摘要:
A selective hydrogenation catalyst, with alumina as carrier, and palladium as active component that distributed on the surface of the carrier in an egg-shell form, characterized in that: provided that the catalyst is weighed 100%, it comprises 0.2-0.5 wt % active component Pd, 2-8 wt % aids lanthanum and/or cerium, and 2-8 wt % alkaline earth metal. The specific surface area of the catalyst is 70-150 m2/g, the pore volume is 0.3-0.6 ml/g, and the crystal form of the carrier may be θ form or θ, α mixed form mainly composed of θ form. The catalyst is suitable for the selective hydrogenation of medium or low distillate oil, especially for the first stage selective hydrogenation of pyrolysis gasoline. The catalyst has good hydrogenation performance, and can keep good hydrogenation activity and stability especially under the condition that the feed contains a small quantity of water, and the content of colloid, arsenic, and diolefin is higher.
摘要:
An apparatus and a method that increase the concentration of recycled hydrogen in the hydrogenation unit are disclosed having a hydration separation unit included between the high-pressure separator and hydrocracking reactor. A part of the recycled hydrogen contacts with the water-in-oil microemulsion to form hydrates from which the light hydrocarbon components are removed. The gas flow entering into the hydration separation unit is present in amount of 20%˜100% of the total gas flow coming from the high-pressure separator; the water-in-oil microemulsion, in which the volume ratio of oil and water is 1:1 to 5:1 may increase hydrogen partial pressure in the reactor and thus upgrade the performance of hydrogenation.
摘要:
A braided comb-shaped salt-resistant thickening agent for tertiary oil extraction from class I oil reservoir is disclosed. The agent is polymerized with monomer (A) and monomer (B), and monomer (A) is one or multiple water soluble non-saturated compound(s) with alkenyl chain, while monomer (B) is at least one compound with the following formula: Monomer (A) is preferably acrylamide, ethenyl pyrrolidone, 2-acrylamide-2 methylpropane sulfonic acid, and acrylic acid or the mixture of the above said compounds, and in the formula of monomer (B), A is COOH, OH, SO3H, R1 and R2 are H or C1-C12 alkyl, R3 and R4 represent C1-C12 alkyl, C1-C12 alkylaryl, C1-C12 alkyl ether or C1-C12 alkyl ester group. This thickening agent has fine water solubility and good property to thicken water medium. The polymer's molecules present a braided comb-shaped structure in water solution with fine salt-resistant performances. The agent can be used together with the water extracted from oil mines to compound the polymer for tertiary oil extraction, and the polymer solution's viscosity can reach the level of the comb-shaped salt-resistant polymer solution applied in class I oil reservoir, so it can promote the economic benefits of tertiary oil extraction from class II oil reservoir and expand the application scope.
摘要:
This invention relates to a new two-stage riser catalytic cracking process, particularly to an improvement of the conventional riser reactor and reaction-regeneration system by application of a two-stage riser reactor to fulfill the aims of the concatenation of oil-vapor, catalyst in relays as result in shortening reaction time and increasing average performance of the catalyst.
摘要:
The present invention provides a device and method for analyzing quality indicators of a natural gas product and an application. The device comprises a sample loading assembly, and first, second, third, fourth, and fifth chromatographic column analysis systems connected in parallel, wherein the first chromatographic column analysis system is configured for separating sulfides from natural gas; the second chromatographic column analysis system is configured for separating hydrocarbons having C3 and higher from the natural gas; the third chromatographic column analysis system is configured for separating oxygen, nitrogen, methane, and carbon monoxide from the natural gas; the fourth chromatographic column analysis system is configured for separating carbon dioxide and ethane from the natural gas; and the fifth chromatographic column analysis system is configured for separating helium and hydrogen from the natural gas; each chromatographic column analysis system is provided with a quantitative tube, a carrier gas tube, and a chromatographic column.