摘要:
A camera module (100) includes an image sensor (10), a lens module (14), and an aperture plate (16). The image senor includes a base (102) and a sensor area/region (104) located in the center of the base. The lens module (14) incorporates a plurality of lenses (140) and a container (142) for holding the lenses, the lenses being distributed in an array within the container. The aperture plate has a plurality of light permeable portions located at positions corresponding to the respective lenses. The lens module and the aperture plate correspond to the sensor area of the image sensor. The area of the container corresponds to the area of the aperture plate.
摘要:
Disclosed is an ultra-thin optical imaging sensor with anamorphic optics comprising of an image capturing panel an anamorphic optical lens of at least two optical magnification powers, and an imaging sensor. The image sensor captures a light reflection from an image deposited on the image capturing panel, which is optically compensated by the anamorphic optical lens. In the preferred embodiment, a folding mirror and a bending mirror is also provided to provide compactness to fold an incoming image towards the anamorphic lens, and the bending mirror then bends the compensated image received from the anamorphic lens to direct that image to an image sensor.
摘要:
A method of manufacturing a velvet plush article includes the steps of: weaving a greige cloth by interweaving face yarns and backing yarns, wherein the face yarns are selected from single-ply bright trilobal yarns and two-ply yarns and the backing yarns are selected from FDY or DTY yarn: pre-processing the greige cloth by brushing, first setting, singeing and second setting the greige cloth sequentially; dyeing and/or printing the greige cloth; and finishing the greige cloth by softening, drying, brushing, sentering, heat-setting, singeing, shearing and final heat-setting the greige cloth. Accordingly, a velvet plush article having a superior smoothness and softness for providing a superior touch and feel comfort is achieved. The velvet plush article may be a velvet plush throw or blanket, or a velvet plush cloth for further processing.
摘要:
Systems and methods for detecting a live human face in an image are disclosed. The methods and systems are capable of receiving multispectral image data that includes a human face. The multispectral image data can comprise visible light image data and near-infrared (NIR) image data. The multispectral image data can be processed to detect the human face. The detected human face in the visible light image data can be associated with the detected human face in the NIR image data to determine whether the detected human face is a live human face.
摘要:
A pacemaker is provided. The pacemaker includes an electrode line having a lead and an electrode. The electrode includes a carbon nanotube composite structure having a matrix and at least one carbon nanotube structure located in the matrix. A first end of each carbon nanotube structure protrudes out of a first surface of the matrix for stimulating the human tissue, and a second end of each carbon nanotube structure protrudes out of a second surface of the matrix to electrically connect to the lead.
摘要:
An electrode lead of a pacemaker includes a metal conductive core and a carbon nanotube film. The metal conductive core defines an extending direction. The carbon nanotube film wraps around the metal conductive core. The carbon nanotube film includes a plurality of carbon nanotubes extending substantially along the extending direction of the metal conductive core. A bared part is defined at one end of the electrode lead. A pacemaker using the above mentioned electrode lead is also disclosed.
摘要:
A device for making a carbon nanotube film includes a substrate having a surface, and two substantially parallel slits defined on the surface of the substrate. The two substantially parallel slits extend into the substrate from the surface of the substrate. A growing surface is defined by the two substantially parallel slits and located between the two substantially parallel slits.
摘要:
A method for making a nerve graft includes the following steps. A culture layer including a carbon nanotube film structure and a protein layer is provided. The protein layer is located on a surface of the carbon nanotube film structure. A number of nerve cells are seeded on a surface of the protein layer away from the carbon nanotube film structure. The nerve cells are cultured until a number of neurites branch from the nerve cells and are connected between the nerve cells.
摘要:
An electrode lead of a pacemaker includes at least one lead wire. The at least one lead wire includes at least one conductive core, a first insulating layer coated on an outer surface of the at least one conductive core, at least one carbon nanotube yarn spirally wound on an outer surface of the first insulating layer, and a second insulating layer coated on the surface of the at least one carbon nanotube yarn. One end of the at least one conductive core protrudes from the first insulating layer to form a naked portion. The at least one carbon nanotube yarn includes a number of carbon nanotubes joined end to end by van der Waals attractive forces. A pacemaker includes a pulse generator and the electrode lead electrically connected with the pulse generator.
摘要:
Laser scanning module employing a scan mirror and magnet rotor subassembly supported by a stationary stator structure. The scan mirror and magnet rotor subassembly includes: a silicone frame having a pair of silicone torsional hinges (i.e. posts) aligned along a scan axis and a supported by a pair of support elements associated with the stator structure, to support the scan mirror and magnet rotor subassembly. When the scan mirror and magnet rotor subassembly is rotated about its scan axis, by forces generated by an electromagnetic coil structure acting on the permanent magnet mounted on silicone frame, the silicone torsional hinges are elastically distorted and generate linear restoring forces which return the rotor subassembly back to its home position about the scan axis.