Abstract:
A method of manufacturing a MOSFET semiconductor device includes forming a gate electrode over a substrate and a gate oxide between the gate electrode and the substrate, forming source/drain extensions in the substrate, and forming first and second sidewall spacers. Dopants are then implanted within the substrate to form amorphitized source/drain regions in the substrate adjacent to the sidewalls spacers. The amorphitized source/drain regions are partially recrystallized, and laser thermal annealing activates the source/drain regions. The source/drain extensions and sidewall spacers are adjacent to the gate electrode. The source/drain extensions can have a depth of about 50 to 300 angstroms, and the source/drain regions can have a depth of about 400 to 1000 angstroms. Also, the recrystallization reduces the amorphitized source/drain regions by a depth of about 20 to 100 angstroms. A semiconductor device is also disclosed.
Abstract:
A method of manufacturing a semiconductor device includes forming a gate electrode over a substrate, introducing dopants into the substrate, forming a tuning layer over at least a portion of the substrate, and activating the dopants using laser thermal annealing. The tuning layer causes an increase or a decrease in the amount of fluence absorbed by the portion of substrate below the tuning layer in comparison to an amount of fluence absorbed by a portion of substrate not covered by the tuning layer. Additional tuning layers can also be formed over the substrate.
Abstract:
An ultra-thin body SOI MOSFET transistor and fabrication method are described which provide extended silicide depth in a gate-last process. The method utilizes the fabrication of a dummy gate, comprising insulation, which is replaced with an insulated gate after implantation, annealing, and the formation of silicide so that diffusion effects are reduced. By way of example, dummy gate stacks are created having insulating upper segments. Silicon is deposited on the wafer and planarized to expose the insulating segment. The junction is formed by implantation followed by annealing to recrystallize the silicon and to activate the junction. Silicide is then formed, to a depth which can exceed the thickness of the silicon within the SOI wafer, on the upper portion of the silicon layer. The segment of insulation is then removed and a gate is formed with a gate electrode insulated by high-k dielectric.
Abstract:
An ULSI MOSFET formed using silicon on insulator (SOI) principles includes masking regions of an amorphous silicon film on a substrate and exposing intended active regions. Laser energy is directed against the intended active regions to anneal these regions without annealing the masked regions, thereby increasing production throughput and decreasing defect density.
Abstract:
A semiconductor-on-insulator (SOI) transistor is disclosed. The SOI transistor includes a source region, a drain region and a body region disposed therebetween, the body region including a gate disposed thereon, the source and drain regions including respective silicide regions. The body region includes a region of recombination centers formed by atom implantation, wherein atoms forming the region of recombination centers are implanted at an angle from opposite sides of the gate in a direction towards the body region, with the gate and source and drain silicide regions acting as an implant blocking mask, such that the region of recombination centers is disposed between a source/body junction and a drain/body junction. Also disclosed is a method of fabricating the SOI transistor.
Abstract:
A method of forming a CMOS structure, the method including the acts of: forming a gate structure over a substrate layer; forming a silicide layer over the substrate layer; forming shallow source/drain areas in the substrate layer; forming an oxide diffusion barrier layer over the structure; forming a metal absorption layer over the oxide diffusion barrier layer; and melting portions of the substrate layer directly overlying the shallow source/drain areas, thereby transforming the shallow source/drain areas into shallow source/drain regions. The act of melting includes the act of exposing the metal absorption layer to pulsed laser beams.
Abstract:
A transistor device formed on a semiconductor-on-insulator (SOI) substrate with a buried oxide (BOX) layer disposed thereon and an active layer disposed on the BOX layer having active regions defined by isolation trenches. The device includes a gate defining a channel interposed between a source and a drain formed within the active region of the SOI substrate. Further, the device includes a plurality of thin silicide layers formed on the source and the drain. Additionally, at least an upper silicide layer of the plurality of thin silicide layers extends beyond a lower silicide layer. Further still, the device includes a plurality of spacers used in the formation of the device. The device further includes a second plurality of thin silicide layers formed on a polysilicon electrode of the gate.
Abstract:
A MOSFET device and method of fabrication. The MOSFET includes a gate having a gate electrode and a gate dielectric formed from a high-K material, the gate dielectric separating the gate electrode and a layer of semiconductor material. A source and a drain each formed by selective in-situ doped epitaxy and located adjacent opposite sides of the gate so as to define a body region from the layer of semiconductor material between the source and the drain and under the gate.
Abstract:
A silicon-on-insulator (SOI) transistor. The SOI transistor includes a germanium implanted source and drain having a body disposed therebetween, and a gate disposed on the body, the germanium being implanted at an angle such that the source has a concentration of germanium at a source/body junction and the gate shields germanium implantation in the drain adjacent a drain/body junction resulting in a graduated drain/body junction. Also disclosed is a method of fabricating the SOI transistor.
Abstract:
A method of manufacturing an integrated circuit may include the steps of forming a deep amorphous region and doping the deep amorphous region. The doping of the deep amorphous region can form source and drain regions with extensions. After doping, the substrate is annealed. The annealing can occur at a low temperature. The deep amorphous region can be formed with a self-amorphizing implant.