Abstract:
A disclosed binder composition comprises a copolymer which comprises a nitrile group-containing monomer unit, an acidic group-containing monomer unit and a basic group-containing monomer unit, wherein the proportion of the nitrile group-containing monomer unit in the copolymer is 70.0 mol % or more and 99.0 mol % or less, and wherein the total proportion of the acidic group-containing monomer unit and the basic group-containing monomer unit in the copolymer is 0.8 mol % or more and 10.0 mol % or less.
Abstract:
An acrylonitrile copolymer binder and application thereof in lithium ion battery. The technical problem to be solved is to provide an acrylonitrile copolymer binder including the following structural units in percentage by weight: 78-95% of acrylonitrile unit, 1-10% of acrylic ester unit and 2-15% of acrylamide unit. For the binder, acrylonitrile monomer is taken as the main body, and acrylic ester monomer, acrylamide monomer or acrylate monomer with strong polarity is added to acrylonitrile for copolymerization to enable the flexibility of a polymer membrane, the affinity of an electrolyte and the proper swelling degree in the electrolyte while keeping strong adhesion or intermolecular force of acrylonitrile polymer molecules, so as to fit the periodic volume changes of electrode active materials along with lithium ion intercalation/deintercalation in charging and discharging processes, thereby improving the energy density and cycle performance of the lithium ion battery.
Abstract:
The invention is directed to melt-processable carbon fiber precursors which have the capability of thermal stabilization in air followed by carbonization in inert atmosphere which make them cost effective and widen their applications.
Abstract:
The present invention relates to coated polymer particles comprising a water-swellable polymer core and an essentially continuous coating encapsulating the core. The coating comprises an oxide, hydroxide or oxide hydrate of silicon, aluminum, zirconium, tin or titanium. The polymer particles do not show instantaneous swelling, when contacted with water or a water-containing liquid, but show delayed water absorption after an appropriate period of time. The coated polymer particles may be used in oil fields, in mining, for construction chemical compositions or as carrier for active substances. The coated polymer particles are prepared by a suspension coating process or a fluidized bed coating process.
Abstract:
A technique for ensuring the coatability of a slurry composition and also enabling an electrochemical device to exhibit excellent high-voltage cycle characteristics is provided. A binder particle aggregate for an electrochemical device electrode comprises a plurality of binder particles that contain a polymer including 75.0 mol % or more and 99.5 mol % or less of a nitrile group-containing monomer unit, wherein a pore content ratio of the plurality of binder particles is 60% or more.
Abstract:
A nitrile copolymer rubber composition including a nitrile copolymer rubber (A) containing 35 to 80 wt % of α,β-ethylenically unsaturated nitrile monomer units (a1), 19.5 to 64.5 wt % of conjugated diene monomer units (a2), and 0.5 to 20 wt % of α,β-ethylenically unsaturated carboxylic acid monomer units (a3) and an inorganic filler (B) with an aspect ratio of 30 to 2,000, wherein a content of the inorganic filler (B) with respect to 100 parts by weight of the nitrile copolymer rubber (A) is 1 to 200 parts by weight is provided.
Abstract:
Biocompatible polymers are manufactured to include an amino acid mimetic monomer and one or more hydrophobic acrylate monomers. The amino acid mimetic monomers are selected to mimic the side chain of the amino acids asparagine or glutamine. The amino acid mimetic monomer can be a methacryloyl or acryloyl derivative of 2-hydroxyacetamide, 3-hydroxypropionamide, alaninamide, lactamide, or glycinamide. These amide functional groups offer the advantage of moderate hydrophilicity with little chemical reactivity. The amino acid mimetic monomer can be copolymerized with one or more hydrophobic acrylate monomers to obtain desired coating properties.
Abstract:
A homogeneous, high nitrile melt processable acrylonitrile olefinically unsaturated multipolymer and a process for making the multipolymer, comprising polymerizing a mixture of acrylonitrile monomer and one or more olefinically unsaturated monomers, in which the rate of addition of the multimonomer mixture is set by the rate of polymerization so that the concentration of unreacted acrylonitrile monomers and unreacted olefinically unsaturated monomer(s) is low and the polymerization process is in a monomer starved condition.
Abstract:
.[.Disclosed herein is a vinylamine copolymer having the structural units represented by the following formulas (I), (II), (III), (IV) and (V): ##STR1## wherein X.sup..crclbar. represents an anion or hydroxyl ion, R represents a hydrogen atom or a methyl group, M.sup..sym. represents a hydrogen ion or a monovalent cation, in which the molar fraction of the structural unit (I) is 5 to 85% by mole, the molar fraction of the structural unit (II) is 2 to 85% by mole, the molar fraction of the structural unit (III) is 5 to 80% by mole, the molar fraction of the structural unit (IV) is 0 to 40% by mole, all of said molar fractions being based on the vinylamine copolymer and the molar fraction of the structural unit (V) is 0 to 8% by mole which is based on the total content of the structural units (III), (IV) and (V), a flocculating agent and a paper strength increasing agent using the vinylamine copolymer, and a process for producing the vinylamine copolymer..]..Iadd.Disclosed herein is a vinylamine copolymer comprising structural units represented by the following formulas: ##STR2##.Iaddend. wherein X.sup..crclbar. represents an anion or hydroxyl ion, R represents a hydrogen atom or a methyl group, M.sup..sym. represents a hydrogen ion or a monovalent cation, in which the molar fraction of the structural unit (A) is 5 to 85% by mole, the molar fraction of the structural unit (B) is 2 to 85% by mole, the molar fraction of the structural unit (C) is 5 to 80% by mole, all of said molar fractions being based on the vinylamine copolymer, and the molar fraction of the structural unit (D) is 0 to 20% by mole which is based on the total content of the structural units (C) and (D), wherein the total of the molar fractions of all structural units of the vinylamine copolymer is equal to 100%.
Abstract:
Disclosed herein is a vinylamine copolymer having the structural units represented by the following formulas (I), (II), (III), (IV) and (V): ##STR1## wherein x.sup..crclbar. represents an anion or hydroxyl ion, R represents a hydrogen atom or a methyl group, M.sup..sym. represents a hydrogen ion or a monovalent cation, in which the molar fraction of the structural unit (I) is 5 to 85% by mole, the molar fraction of the structural unit (II) is 2 to 85% by mole, the molar fraction of the structural unit (III) is 5 to 80% by mole, the molar fraction of the structural unit (IV) is 0 to 40% by mole, all of said molar fractions being based on the vinylamine copolymer, and the molar fraction of the structural unit (V) is 0 to 8% by mole which is based on the total content of the structural units (III), (IV), and (V), a flocculating agent and a paper strength increasing agent using the vinylamine copolymer, and a process for producing the vinylamine copolymer.