摘要:
A BUILDING PRODUCT IS DISCLOSED COMPRISING EXPANDED PERLITE AND A SPECIFICALLY PREPARED CORRUGATED BOXBOARD BASED FIBER. THE BUILDING PRODUCT EXHIBITS SUPERIOR PROPERTIES IN THE STRENGTH AND ABRASION RESISTANCE CATEGORIES AMONG OTHERS.
摘要:
Treated perlite-based cementitious materials, concrete, and related techniques are disclosed. In accordance with some embodiments, a treated perlite-based cementitious material may be produced by intergrinding raw perlite ore, polyvinyl alcohol (PVA) powder, a polycarboxy late material, and (optionally) at least one of calcium sulfate (CaSO4) and calcium sulfite (CaSO3). In accordance with some embodiments, expanded perlite wastes and/or expanded perlite also may be included in the cementitious material. In accordance with some embodiments, raw perlite ore, expanded perlite wastes, and expanded perlite may be combined in providing a cementitious material. In at least some cases, the cementitious material may be provided as an all-in-one powder blend. In accordance with some embodiments, concrete may be produced by mixing the cementitious material with ordinary Portland cement (OPC), sand, rock, and water.
摘要:
The present invention is directed to a gypsum panel and a method of making such gypsum panel. For instance, in one embodiment, the gypsum panel comprises a gypsum core and a first facing material and a second facing material sandwiching the gypsum core, wherein the gypsum core includes gypsum and one or more chloride ion mitigating additives. The methods of the present invention are directed to making the aforementioned gypsum panels by providing the first facing material, providing a gypsum slurry comprising gypsum, water, and the respective additive onto the first facing material, and providing a second facing material on the gypsum slurry.
摘要:
A method for treating a well in a hydrocarbon-producing subterranean production zone. The method for treating well-producing hydrocarbons from a subterranean production zone includes dry mixing a granite waste powder (GWP) in a form of rock aggregates and a cement to form a mixture. Then the mixture is added to the cement composition containing water, pre-hydrated sodium bentonite, calcium chloride, a dispersant, and an alcohol-based defoamer to form a cement slurry. The cement slurry is prepared at a density of from 13.5 pounds per gallon (ppg) to 14.5 ppg and contains the GWP in a range of from 5 wt. % to 20 wt. % of the cement slurry. 10 wt. % to 15 wt. % perlite is added into the cement slurry to form a ternary blend which is cured and then the cured product is injected into the well to seal the well at the subterranean production zone.
摘要:
In the present disclosure, a cement board is disclosed. The cement board comprises a cement core having a first surface and a second surface opposite the first surface. The cement core comprises a binder, a lightweight aggregate, and a combustible additive, wherein the combustible additive is present in an amount of greater than 0 wt. % to less than 0.5 wt. % based on the weight of the cement core. The cement board passes CAN/ULC-S114:2018 and/or ASTM E136-19a.
摘要:
An ultrastable cementitious material with nano-molecular veneer makes a cementitious material by blending 29 wt % to 40 wt % of a magnesium oxide dry powder containing 80 wt % to 98 wt % of magnesium oxide based on a final total weight of the cementitious material, with 14 wt % to 18 wt % of a magnesium chloride dissolved in water and reacting to form a liquid suspension, mixing from 2 to 10 minutes, adding a phosphorus-containing material, and allowing the liquid suspension to react into an amorphous phase cementitious material, wherein a portion of the amorphous phase cementitious material grows a plurality of crystals. The plurality of crystals are encapsulated by the amorphous phase cementitious material forming a nano-molecular veneer. A process to make the ultrastable cementitious material. A tile backer board incorporating the ultrastable cementitious material and a process for making the tile backer board.
摘要:
Disclosed is a CO2 solidified fiber cement board and its preparation method. The matrix composition of the fiber cement board prepared in this disclosure is calcium carbonate, which has high compactness, and the crystal form of calcium carbonate is adjusted by adding shell powder to improve the toughness of the matrix, so that the fiber cement board has excellent mechanics and durability performance. In addition, the preparation process does not require high temperature maintenance, and has the characteristics of normal temperature preparation, which creates conditions for the introduction of organic synthetic fibers, so that the organic synthetic fibers can further improve the brittleness of cement fiberboard. While reducing energy consumption, the preparation process can also effectively solve the problem that excessive pressure is easily generated in the fiberboard under high temperature conditions in the existing high-temperature and high-pressure curing process.
摘要:
Disclosed is a CO2 solidified fiber cement board and its preparation method. The matrix composition of the fiber cement board prepared in this disclosure is calcium carbonate, which has high compactness, and the crystal form of calcium carbonate is adjusted by adding shell powder to improve the toughness of the matrix, so that the fiber cement board has excellent mechanics and durability performance. In addition, the preparation process does not require high temperature maintenance, and has the characteristics of normal temperature preparation, which creates conditions for the introduction of organic synthetic fibers, so that the organic synthetic fibers can further improve the brittleness of cement fiberboard. While reducing energy consumption, the preparation process can also effectively solve the problem that excessive pressure is easily generated in the fiberboard under high temperature conditions in the existing high-temperature and high-pressure curing process.
摘要:
[Object] To provide a building material having excellent durability. [Solution] A building material has a convex part formed on a surface thereof, the convex part including a first lateral surface part and a second lateral surface part corresponding to the first lateral surface part. The building material is formed from a mixture containing a hydraulic material, an admixture, and a plant-based reinforcing material, and the plant-based reinforcing material at least in the convex part is distributed in the mixture with the hydraulic material and the admixture attached to the plant-based reinforcing material. A distribution of the plant-based reinforcing material in the first lateral surface part and a distribution of the plant-based reinforcing material in the second lateral surface part are substantially the same. Desirably, the convex part includes a first edge part that is an edge part of the first lateral surface part and a second edge part that is an edge part of the second lateral surface part and that corresponds to the first edge part, and a distribution of holes formed in the first edge part and a distribution of holes formed in the second edge part are substantially the same.
摘要:
The present invention discloses inorganic pelletized perlitic lightweight granules and a preparation process and use thereof. The present invention develops through encapsulation technology a novel type of lightweight particles, namely, inorganic pelletized perlitic lightweight granules comprising expanded perlite as a core material and a cementitious material as a shell material, forming a core-shell structure in which a perlite core is encapsulated in a cementitious shell. The cementitious material including cement and fly ash is coated onto the surface of expanded perlite particles through an encapsulation process by a pelletizer under controlled water spraying. The resulting inorganic pelletized perlitic lightweight granules are lower in cost and easier to produce, and have better fire resistance, higher crushing strength, and better compatibility with concrete. The inorganic pelletized perlitic lightweight granules can overcome the problems of conventional lightweight concrete, such as high water absorption and inconsistent performance.