Abstract:
A method is provided for applying a reactive aldehyde containing coating to a substrate. The method includes subjecting a substrate to a plasma discharge in the presence of a compound of formula (I): Where X is an optionally substituted straight or branched alkylene chain(s) or aryl group(s); R1, R2 or R3 are optionally substituted hydrocarbyl or heterocyclic groups, and m is an integer greater than 0.
Abstract:
The present invention fabricates a hydrophobic and oleophobic polymer fabric through two stages of modification using atmospheric plasmas. The modified fabric has a rough surface and a fluorocarbon functional group having the lowest surface free energy. The fabric has a grafted fluorocarbon monomer layer to enhance the graft efficiency of the fluorocarbon functional groups and its wash fastness. The atmospheric plasmas can be mass produced and less expensively. Hence, the present invention can rapidly modify surfaces of polymeric materials with low cost and good environment protection.
Abstract:
An item selected from a piece of fashion clothing, a clothing accessory or a household textile having a polymeric coating, formed by exposing said item or a material or yarn from which the item is subsequently constructed, to a pulsed plasma comprising a compound of formula (I) where R1, R2, R3 and l4 are defined in the specification for a sufficient period of time to allow a polymeric layer to form on the surface of the item or yarn. Items of this type are protected from contamination by a wide number of liquids, including environmental hazards such as rain water and water-based liquids as well as some oily liquids. They are also fade and odour resistant.
Abstract:
An apparatus and method for plasma finishing of fibrous materials including paper and knitted, woven and non-woven fibrous substrates such that desired characteristics are imparted are described. The method includes depositing a monomer comprising at least one fluorocarbon monomer with chemical additives, as required, at atmospheric pressure onto the paper or knitted, woven or non-woven substrate; exposing the monomer on a single surface of the fibrous material to an inert gas, atmospheric-pressure plasma, thereby causing polymerization of the monomer species; and repeating this sequence using multiple sequential deposition and plasma discharge steps to create a layered surface having durability against abrasion for both water-based laundry methods and dry-cleaning methods, and normal wear, without affecting the feel, drape, appearance or breathability of the substrate material. The present method uses a high-power, continuously operating plasma that is 104 times more powerful than the prior art plasma sources utilized in the textile industry, and produces a durable finish with between 0.5 and 2 s of plasma exposure. This is sufficiently rapid to meet commercial fabric processing throughput, and repeated cleaning of the electrodes is not required.
Abstract:
A method is provided for forming an active material containing coating on a substrate. The substrate is suitably a wipe, cloth or sponge for household use, or a water-soluble household cleaning unit dose product. The method comprises the steps of: i) introducing one or more gaseous or atomised liquid and/or solid coating-forming materials which undergo chemical bond forming reactions within a plasma environment and one or more active materials which substantially do not undergo chemical bond forming reactions within a plasma environment, into an atmospheric or low pressure plasma discharge and/or an excited gas stream resulting therefrom, and ii) exposing the substrate to the resulting mixture of atomised coating-forming and at least one active material which are deposited onto the substrate surface to form a coating.
Abstract:
A plasma is produced in a treatment space (58) by diffusing a plasma gas at atmospheric pressure and subjecting it to an electric field created by two metallic electrodes (54,56) separated by a dielectric material (64), and a precursor material is introduced into the treatment space to coat a substrate film or web (14) by vapor deposition or atomized spraying at atmospheric pressure. The deposited precursor exposed to an electromagnetic field (AC, DC, or plasma) and then it is cured by electron-beam, infrared-light, visible-light, or ultraviolet-light radiation, as most appropriate for the particular material being deposited. Additional plasma post-treatment may be used to enhance the properties of the resulting coated products.
Abstract:
A porous substrate is pretreated in a plasma field and a functionalizing monomer is immediately flash-evaporated, deposited and cured over the porous substrate in a vacuum vapor-deposition chamber. By judiciously controlling the process so that the resulting polymer coating adheres to the surface of individual fibers in ultra-thin layers (approximately 0.02–3.0 μm) that do not extend across the pores in the material, the porosity of the porous substrate is essentially unaffected while the fibers and the final product acquire the desired functionality. The resulting polymer layer is also used to improve the adherence and durability of metallic and ceramic coatings.
Abstract:
A porous substrate is pretreated in a plasma field and a functionalizing monomer is immediately flash-evaporated, deposited and cured over the porous substrate in a vacuum vapor-deposition chamber. By judiciously controlling the process so that the resulting polymer coating adheres to the surface of individual fibers in ultra-thin layers (approximately 0.02-3.0 μm) that do not extend across the pores in the material, the porosity of the porous substrate is essentially unaffected while the fibers and the final product acquire the desired functionality. The resulting polymer layer is also used to improve the adherence and durability of metallic and ceramic coatings.
Abstract:
A plasma is produced in a treatment space (58) by diffusing a plasma gas at atmospheric pressure and subjecting it to an electric field created by two metallic electrodes (54,56) separated by a dielectric material (64), a precursor material is introduced into the treatment space to coat a substrate film or web (14) by vapor deposition or atomized spraying at atmospheric pressure. The deposited precursor is cured by electron-beam, infrared-light, visible-light, or ultraviolet-light radiation, as most appropriate for the particular material being deposited. Additional plasma post-treatment may be used to enhance the properties of the resulting coated products.