摘要:
By locally adapting the size and/or density of a contact structure, for instance, within individual transistors or in a more global manner, the overall performance of advanced semiconductor devices may be increased. Hence, the mutual interaction between the contact structure and local device characteristics may be taken into consideration. On the other hand, a high degree of compatibility with conventional process strategies may be maintained.
摘要:
Dielectric cap layers of sophisticated high-k metal gate electrode structures may be efficiently removed on the basis of a sacrificial fill material, thereby reliably preserving integrity of a protective sidewall spacer structure, which in turn may result in superior uniformity of the threshold voltage of the transistors. The sacrificial fill material may be provided in the form of an organic material that may be reduced in thickness on the basis of a wet developing process, thereby enabling a high degree of process controllability.
摘要:
In a replacement gate approach, the polysilicon material may be efficiently removed during a wet chemical etch process, while the semiconductor material in the resistive structures may be substantially preserved. For this purpose, a species such as xenon may be incorporated into the semiconductor material of the resistive structure, thereby imparting a significantly increased etch resistivity to the semiconductor material. The xenon may be incorporated at any appropriate manufacturing stage.
摘要:
A spacer structure in sophisticated semiconductor devices is formed on the basis of a high-k dielectric material, which provides superior etch resistivity compared to conventionally used silicon dioxide liners. Consequently, a reduced thickness of the etch stop material may nevertheless provide superior etch resistivity, thereby reducing negative effects, such as dopant loss in the drain and source extension regions, creating a pronounced surface topography and the like, as are typically associated with conventional spacer material systems.
摘要:
By appropriately designing the geometric configuration of a contact level of a sophisticated semiconductor device, the tensile stress level of contact elements in N-channel transistors may be increased, while the tensile strain component of contact elements caused in the P-channel transistor may be reduced.
摘要:
By selectively providing a buffer layer having an appropriate thickness, height differences occurring during the deposition of an SACVD silicon dioxide may be reduced during the formation of an interlayer dielectric stack of advanced semiconductor devices. The buffer material may be selectively provided after the deposition of contact etch stop layers of both types of internal stress or may be provided after the deposition of one type of dielectric material and may be used during the subsequent patterning of the other type of dielectric stop material as an efficient etch stop layer.
摘要:
The present invention relates to plastic molded bodies having two-dimensional or three-dimensional image structures produced in the interior through laser subsurface engraving. The plastic molded bodies are made of plastic materials which have a content of nanoscale metal oxides having particle sizes from 1 to 500 nm, both the plastic material and also the included metal oxide being transparent to the laser light used for producing the image structures. The plastic materials from which the molded bodies are manufactured particularly contain metal oxides having particle sizes from 5 to 100 nm at a content of 0.0001 to 0.1 weight-percent. Typical metal oxides are nanoscale indium-tin oxide or antimony-tin oxide.
摘要:
By providing dummy vias below electrically non-functional metal regions, the risk for metal delamination in subsequent processes may be significantly reduced. Moreover, in some embodiments, the mechanical strength of the resulting metallization layers may be even more enhanced by providing dummy metal regions, which may act as anchors for an overlying non-functional metal region. In addition, dummy vias may also be provided in combination with electrically functional metal lines and regions, thereby also enhancing the mechanical stability and the electrical performance thereof.
摘要:
By appropriately treating an interlayer dielectric material above P-channel transistors, the compressive stress may be significantly enhanced, which may be accomplished by expanding the interlayer dielectric material, for instance, by providing a certain amount of oxidizable species and performing an oxidation process.
摘要:
By locally adapting the size and/or density of a contact structure, for instance, within individual transistors or in a more global manner, the overall performance of advanced semiconductor devices may be increased. Hence, the mutual interaction between the contact structure and local device characteristics may be taken into consideration. On the other hand, a high degree of compatibility with conventional process strategies may be maintained.