Abstract:
A radio access network (RAN) may receive a call setup request from a wireless communication device (WCD). The call setup request may indicate that the WCD supports a first media codec. The RAN may obtain a set of candidate wireless coverage areas for serving the WCD. A first subset of the candidate wireless coverage areas may support the first media codec, and a second subset of the candidate wireless coverage areas might not support the first media codec. The RAN may assign traffic channels to the WCD, such that the assigned traffic channels include traffic channels from at least two of the first subset of the candidate wireless coverage areas, but do not include traffic channels from any of the second subset of the candidate wireless coverage areas. The RAN may communicate with the WCD substantially simultaneously via the assigned traffic channels using the first media codec.
Abstract:
The present technique relates to a demodulation device, a demodulation method and a program capable of realizing a demodulation process at a rate equivalent to a case where I and Q channel signals are not inverted, even when the I and Q channel signals are inverted. A frequency correction unit establishes synchronization of a frequency and clock based on a signal from a frequency synchronization unit. A channel inversion detection unit of a frame synchronization unit detects presence or absence of inversion of I and Q channel signals, and supplies, as a detection result, a channel inversion detection result to the channel inversion control unit. The channel inversion control unit switches the I and Q channel signals if the inversion has occurred, based on the channel inversion detection result. This technique can be applied to a demodulation device.
Abstract:
Systems and methods are presented for controlling the peak-to-average-power of a baseband orthogonal-frequency-domain multiplexing (OFDM) signal by designating a subset of the available subcarriers as information-bearing data-subcarriers, and loading remaining subcarriers by symbols that are a function of the symbols loading the data-subcarriers. At the receiver, the data-dependent subcarriers are optionally combined with data-subcarriers to increase error protection.
Abstract:
This invention discloses a method for communications faster than the Nyquist rate (FTN) and faster than the Shannon rate which method is Quadrature Layered Modulation (QLM). QLM properties include scaling the data symbol pulses to maintain the same error rate performance for all rates. QLM alternatively considers the increase in the data symbol rate to be a layering of additional communications over the same link. The Shannon bound is a limit on the capacity of a communication link when transmitting data symbols at the Nyquist rate. QLM observes one can communicate at FTN to transmit more information than the Shannon rate since the Nyquist rate captures the information in a frequency band and does not constraint the information. These properties describe QLM and a separate math proof-of-concept is disclosed. Implementation and performance data demonstrate QLM can support communications data rates which are at least double the Shannon rate.
Abstract:
A user device receives packets from a base station. The user device may invoke decoding while the packet is still being received, based on the incomplete contents of a given packet. This “partial packet decoding” relies on the fact that the underlying information in the packet is encoded with redundancy (code rate less than one). If link quality is poor, the partial packet decoding is likely to be unsuccessful, i.e., to fail in its attempt to recover the underlying information. To avoid waste of power, the user device may be configured to apply one or more tests of link quality prior to invoking the partial packet decoding on a current packet.
Abstract:
A system and method are provided for implementing a soft Reed-Solomon (RS) decoding scheme, technique or algorithm to improve physical layer performance in cable modems and cable gateways. The algorithm is implemented in a forward error correction (FEC) module connected to a QAM demodulator. The RS decoding scheme is implemented without significantly complicating hardware or processing overhead. The soft Reed-Solomon (RS) decoding scheme extracts candidate RS symbols and their Log Likelihood Ratios (LLRs) from QAM symbols. The set of highest probable candidate blocks are then chosen and these are decoded using a variant of the Chase algorithm until a valid codeword is detected at the decoder output.
Abstract:
A method begins by a source processing module securing data based on a key stream to produce secured data, where the key stream is derived from a unilateral encryption key accessible only to the source processing module, and sending the secure data to an intermediator processing module, where desecuring the secured data is divided into two partial desecuring stages. The method continues with the intermediator processing module partially desecuring the secure data in accordance with a first partial desecuring stage to produce partially desecured data and sending the partially desecured data to a destination processing module. The method continues with the destination processing module further partially desecuring the partially desecured data in accordance with a second desecuring stage to recover the data, where the destination processing module does not have access to the encryption key or to the key stream.
Abstract:
Disclosed are a transmission device and a transmission method with which it is possible to prevent delays in data transmission and to minimize the increase in the number of bits necessary for the notification of a CC to be used, in cases where a CC to be used is added during communication employing carrier aggregation. When a component carrier is to be added to a component carrier set, a setting section (101) provided in a base station (100): modifies a CIF table that defines the correspondence between code points, which are used as labels for the respective component carriers contained in the component carrier set, and the identification information of the respective component carriers; and assigns a vacant code point to the component carrier to be added, while keeping the correspondence between the code points and the component carrier identification information defined in the CIF table before modification.
Abstract:
Transmission quality is improved in an environment in which direct waves dominate in a transmission method for transmitting a plurality of modulated signals from a plurality of antennas at the same time. All data symbols used in data transmission of a modulated signal are precoded by hopping between precoding matrices so that the precoding matrix used to precode each data symbol and the precoding matrices used to precode data symbols that are adjacent to the data symbol in the frequency domain and the time domain all differ. A modulated signal with such data symbols arranged therein is transmitted.
Abstract:
A user device receives packets from a base station. The user device may invoke decoding while the packet is still being received, based on the incomplete contents of a given packet. This “partial packet decoding” relies on the fact that the underlying information in the packet is encoded with redundancy (code rate less than one). If link quality is poor, the partial packet decoding is likely to be unsuccessful, i.e., to fail in its attempt to recover the underlying information. To avoid waste of power, the user device may be configured to apply one or more tests of link quality prior to invoking the partial packet decoding on a current packet.