Abstract:
Embodiments describe optical devices including a first waveguide, comprising a first cross-sectional area, to receive a light comprising a first optical mode, and a second waveguide, adjacent to the first waveguide, to receive a light comprising a second optical mode orthogonal to the first optical mode. The second waveguide comprises a second cross-sectional area different than the first waveguide such that an absorption/gain coefficient of the second waveguide for light comprising the second optical mode is equal to an absorption/gain coefficient of the first waveguide for light comprising the first optical mode. The optical devices may comprise modulators, photodetectors, or semiconductor optical amplifiers (SOAs).
Abstract:
In accordance with one embodiment of the present disclosure a system for compensating for polarization dependent loss experienced by an optical signal comprises an optical amplifier configured to amplify an optical signal and having a polarization dependent gain (PDG). The system also comprises a polarization rotator coupled to the amplifier and configured to rotate the polarization of the optical signal before the signal enters the amplifier. The system also comprises a polarization dependent loss (PDL) controller coupled to the amplifier and the rotator. The PDL controller may be configured to determine a post-amplifier PDL of the optical signal as the signal leaves the optical amplifier. The PDL controller may also be configured to control the rotator to rotate the polarization of the optical signal based on the post-amplifier PDL, such that the PDG of the amplifier compensates for the PDL experienced by the optical signal.
Abstract:
An optical amplifier has a low polarization dependent gain. The amplifier includes a gain medium including a plurality of adjoining semiconductor layers to provide optical gain wherein the adjoining semiconductor layers define one or more quantum wells for electrons and are operative to provide both direct and indirect electron-hole transitions in the gain medium. A first quantized electron energy level in the conduction band and a first quantized hole energy level in the valence band is located in a first layer. A further first quantized hole energy level in the valence band is located in an adjacent second layer.
Abstract:
A polarization-independent SOA having an InP substrate used as a semiconductor substrate, and an active layer taking an MQW structure formed of a barrier layer made of GaInAs with tensile strain applied thereto and a well layer made of GaInNAs with no strain applied thereto alternately laminated in a plurality of layers, here, four layers of the well layer and five layers of the barrier layer are alternately laminated, is proposed.
Abstract:
An apparatus includes a first optical amplifier that uses a rare-earth-doped optical medium, an isolator that inputs amplified light amplified by the first optical amplifier, a second optical amplifier that uses a rare-earth-doped optical medium to amplify a light output from the isolator, and a first light router that routes amplified spontaneous emission light generated by the first optical amplifier or the second optical amplifier to input, by a second light router, the routed amplified spontaneous emission light to the optical rare-earth-doped medium other than the optical rare-earth-doped medium where the routed amplified spontaneous emission light is generated.
Abstract:
A quantum dot semiconductor device includes an active layer having a plurality of quantum dot layers each including a composite quantum dot formed by stacking a plurality of quantum dots and a side barrier layer formed in contact with a side face of the composite quantum dot. The stack number of the quantum dots and the magnitude of strain of the side barrier layer from which each of the quantum dot layers is formed are set so that a gain spectrum of the active layer has a flat gain bandwidth corresponding to a shift amount of the gain spectrum within a desired operation temperature range.
Abstract:
A semiconductor optical amplifier is provided having polarization independent optical amplification characteristics and a flat gain spectrum over a wide wavelength region. In the semiconductor optical amplifier including a multi-quantum well active layer formed of well layers and barrier layers alternately laminated to each other on an InP substrate, the well layers and the barrier layers each have a tensile strain, and the tensile strain of each of the barrier layers is larger than the tensile strain of each of the well layers.
Abstract:
A polarization-independent SOA having an InP substrate used as a semiconductor substrate, and an active layer taking an MQW structure formed of a barrier layer made of GaInAs with tensile strain applied thereto and a well layer made of GaInNAs with no strain applied thereto alternately laminated in a plurality of layers, here, four layers of the well layer and five layers of the barrier layer are alternately laminated, is proposed.
Abstract:
A semiconductor optical amplification device is disclosed that has a gain spectrum of a wide bandwidth. The semiconductor optical amplification device includes an InP substrate and an active layer on the InP substrate. The active layer has a quantum well structure formed by alternately stacking a barrier layer and a well layer, the barrier layer is formed from a tensile-strained InGaAs film, and the well layer is formed from a compressively-strained InGaAs film.
Abstract:
An optical semiconductor device such as, for example, a quantum dot SOA and a fabrication method therefor are disclosed wherein an active layer and a current constriction structure can be formed leftwardly and rightwardly symmetrically to minimize the polarization dependency. The fabrication method for an optical semiconductor device includes the steps of forming a semiconductor layer on a semiconductor substrate, forming a groove by removing the semiconductor layer at an opening of a mask, forming a first clad layer in the form of a projection having two symmetrical inclined faces in the groove by selective growth by using the mask as a selective growth mask, forming an active layer on the two inclined faces of the first clad layer, and removing the mask and burying the active layer with a second clad layer.