Abstract:
A method of forming a bit line gate structure of a dynamic random access memory (DRAM) includes the following. A hard mask layer is formed on a metal stack by a chemical vapor deposition process importing nitrogen (N2) gases and then importing amonia (NH3) gases. The present invention also provides a bit line gate structure of a dynamic random access memory (DRAM) including a metal stack and a hard mask. The metal stack includes a polysilicon layer, a titanium layer, a titanium nitride layer, a first tungsten nitride layer, a tungsten layer and a second tungsten nitride layer stacked from bottom to top. The hard mask is disposed on the metal stack.
Abstract:
A semiconductor device includes a substrate, gate electrodes, spacers and contact structures. The gate electrodes are disposed on the substrate, and the spacers are disposed on the sidewalls of the gate electrodes. Each of the spacers has an inner sidewall and an outer sidewall. The contact structure is disposed between the gate electrodes, and its bottom is in direct contact with all the region of the outer sidewall of the spacers.
Abstract:
A method of forming a semiconductor device includes following steps. Firstly, a gate structure is formed on a substrate, and two source/drain regions are formed. Then, a contact etching stop layer (CESL) is formed to cover the source/drain regions, and a first interlayer dielectric (ILD) layer is formed on the CESL. Next, a replace metal gate process is performed to form a metal gate and a capping layer on the metal gate, and a second ILD layer is formed on the first ILD layer. Following these, a first opening is formed in the second and first ILD layers to partially expose the CESL, and a second opening is formed in the second ILD to expose the capping layer. Finally, the CESL and the capping layer are simultaneously removed.
Abstract:
A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes a substrate, a plurality of active areas, and an isolation structure. The substrate has a device region and a peripheral region surrounding the device region. The active areas are located in the substrate in the device region. When viewed from above, the edges of the ends of the active areas adjacent to the boundary of the device region are aligned with each other, and the width of the ends of the active areas adjacent to the boundary of the device region is greater than the width of the other portions of the active areas. The isolation structure is disposed in the substrate and surrounds the active areas and is located in the peripheral region.
Abstract:
The present invention provides a semiconductor structure including a substrate, at least one fin group and a plurality of sub-fin structures disposed on the substrate, wherein the fin group is disposed between two sub-fin structures, and a top surface of each sub-fin structure is lower than a top surface of the fin group; and a shallow trench isolation (STI) disposed in the substrate, wherein the sub-fin structures are completely covered by the shallow trench isolation.
Abstract:
A method of forming a semiconductor device is disclosed. A substrate having multiple fins is provided. An insulating layer fills a lower portion of a gap between two adjacent fins. At least one first stacked structure is formed on one fin and at least one second stacked structure is formed on one insulation layer. A first dielectric layer is formed to cover the first and second stacked structures. A portion of the first dielectric layer and portions of the first and second stacked structures are removed. Another portion of the first dielectric layer is removed until a top of the remaining first dielectric layer is lower than tops of the first and second stacked structures. A second dielectric layer is formed to cover the first and second stacked structures. A portion of the second dielectric layer is removed until the tops of the first and second stacked structures are exposed.
Abstract:
A method for fabricating metal gate transistor is disclosed. The method includes the steps of: providing a substrate having a NMOS region and a PMOS region; forming a dummy gate on each of the NMOS region and the PMOS region respectively; removing the dummy gates from each of the NMOS region and the PMOS region; forming a n-type work function layer on the NMOS region and the PMOS region; removing the n-type work function layer in the PMOS region; forming a p-type work function layer on the NMOS region and the PMOS region; and depositing a low resistance metal layer on the p-type work function layer of the NMOS region and the PMOS region.
Abstract:
A method for manufacturing a semiconductor device is provided. A first stack structure and a second stack structure are formed to respectively cover a portion of a first fin structure and a second fin structure. Subsequently, a spacer is respectively formed on the sidewalls of the fin structures through an atomic layer deposition process and the composition of the spacers includes silicon carbon nitride. Afterwards, a interlayer dielectric is formed and etched so as to expose the hard mask layers. A mask layer is formed to cover the second stack structure and a portion of the dielectric layer. Later, the hard mask layer in the first stack structure is removed under the coverage of the mask layer. Then, a dummy layer in the first stack structure is replaced with a conductive layer.
Abstract:
The present invention provides a manufacturing method for forming a semiconductor structure, in which first, a substrate is provided, a hard mask is disposed on the substrate, the hard mask is then patterned to form a plurality of fin hard masks and a plurality of dummy fin hard masks, afterwards, a pattern transferring process is performed, to transfer the patterns of the fin hard masks and the fin hard masks into the substrate, so as to form a plurality of fin groups and a plurality of dummy fins. Each dummy fin is disposed on the end side of one fin group, and a fin cut process is performed, to remove each dummy fin.
Abstract:
A method for fabricating a semiconductor device is provided herein and includes the following steps. First, a first interlayer dielectric is formed on a substrate. Then, a gate electrode is formed on the substrate, wherein a periphery of the gate electrode is surrounded by the first interlayer dielectric. Afterwards, a patterned mask layer is formed on the gate electrode, wherein a bottom surface of the patterned mask layer is leveled with a top surface of the first interlayer dielectric. A second interlayer dielectric is then formed to cover a top surface and each side surface of the patterned mask layer. Finally, a self-aligned contact structure is formed in the first interlayer dielectric and the second interlayer dielectric.