Abstract:
A network architecture is disclosed with support for location services (LCS). A radio access network (RAN) node receives a registration request from a user equipment (UE), indicating that the UE supports a ranging based location service session. The RAN node further receives an internal identifier (ID) for identifying information associated with the UE in communication between the RAN node and a core network during the ranging based location service session. The RAN node allocates radio resources to the UE for performing a ranging operation involving a plurality of devices including the UE, and associates the radio resources with the internal ID of the UE for identifying location results. Then the RAN node informs the UE of the radio resources allocated for the ranging operation.
Abstract:
Methods, apparatuses, and computer-readable mediums for wireless communication are disclosed by the present disclosure. In an example, the present disclosure includes receiving, at a second device, a Random Access Channel (RACH) preamble from a first device, the RACH preamble initiates an access procedure between the first device and the second device; selecting, by the second device, a transmission resource associated with a second RACH message based on the RACH preamble; and transmitting, by the second device, the second RACH message on the selected transmission resource to the first device.
Abstract:
The present aspects relate to device-to-device (D2D) relaying in a wireless communication system. In an aspect, a relay user equipment (UE) may receive, on a downlink channel from a network entity, at least one indication including resource allocation information for at least one of the relay UE or a remote UE. The relay UE may further transmit, on a sidelink channel to the remote UE, the resource allocation information of the remote UE. In another aspect, a remote UE may receive, on at least one sidelink channel, resource allocation information from a relay UE, the resource allocation information indicating one or more resources allocated for sidelink communication for the remote UE. The remote UE may further transmit, on one or more sidelink channels, data to the relay UE in accordance with the one or more resources allocated for sidelink communication.
Abstract:
In one aspect of the disclosure, to improve the performance of device-to-device based relay communication, a method, a computer-readable medium, and an apparatus for performing rate control based on feedback from participating UEs are provided. The apparatus may be a first UE. The first UE may receive a signal from a second UE through a device-to-device communication channel. The first UE may determine a feedback based on the received signal. The first UE may transmit the feedback to adjust transmission of the signal at the second UE. In another aspect of the disclosure, a first UE may transmit a signal to a second UE through a device-to-device communication channel. The first UE may receive a feedback of the signal. The first UE may adjust transmission of the signal based on the feedback.
Abstract:
The present disclosure enables a multicast and/or unicast transmitting UE to configure a multicast device-to-device communication and/or the unicast device-to-device communication such that UE may distinguish between the unicast and multicast device-to-device communications. The apparatus receives a unicast device-to-device communication including a destination identifier. The apparatus also receives a multicast device-to-device communication including the destination identifier. The apparatus differentiates the unicast device-to-device communication from the multicast device-to-device communication based on information provided in a header of the unicast device-to-device communication.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided that enable UEs to conserve power while involved in ProSe communication. The apparatus transmits discovery class information for ProSe communication to an A-UE and to an M-UE. The discovery class information may be transmitted from a PF in response to discovery requests. Discovery class rules may be sent from the PF as a part of service authorization. The discovery class information may be transmitted from a ProSe application server as application layer signaling. The A-UE and M-UE may use the discovery class information to select a pool of ProSe resources according to the discovery class information for transmission or monitoring of ProSe communication. The M-UE may use the information to reduce the number of resource pools of resources that are monitored for ProSe communication.
Abstract:
Methods, systems, and devices for sidelink wireless communications are described in which a user equipment (UE) engaged in sidelink communications may provide for radio link maintenance of the sidelink connection by initiating a maintenance procedure, such as a measurement procedure, when one or more conditions are detected. The one or more conditions may include a threshold time being exceeded since a data transmission via the sidelink connection, or a threshold time being exceeded since a successful reception of a sidelink transmission from another UE. An access stratum layer at the initiating UE may format a data packet in the absence of higher layer data to be transmitted via the sidelink connection to initiate the maintenance procedure.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may identify a set of one or more sidelink resources, and the UE may identify wake-up signal occasions associated with the resources. The UE may monitor for wake-up signals during the wake-up signal occasions, and the UE may further monitor the associated set of one or more resources based on receiving a wake-up signal. In some examples, respective sets of one or more sidelink resources may be associated with a number of multiple-input multiple-output layers used for sidelink communications, or may indicate respective bandwidth parts used for monitoring sidelink transmissions.
Abstract:
Aspects of the present disclosure describe indicating per-packet quality of service (QoS) in communications by a wireless communications device. A packet from an application generated for a first radio access technology (RAT) can be obtained, where the packet includes a first QoS value associated with the first RAT, and/or the first QoS value can be mapped to a second QoS value associated with the second RAT. In another example, the QoS value can be indicated in the packet along with a reflective indicator indicating to use the QoS value in transmitting a response to the packet.
Abstract:
Aspects relate to mechanisms for sidelink reservation across frequency bands. In some examples, a sidelink device may be configured to communicate over a first frequency band (e.g., a sub-6 gigahertz frequency band) and a second frequency band (e.g., a millimeter wave frequency band) with one or more other sidelink devices. The sidelink device may further be configured to perform cross-link resource reservation for a sidelink transmission in which a resource reservation message transmitted on the first frequency band indicates reserved resources within the second frequency band for the sidelink transmission. The sidelink device may then transmit sidelink control information (SCI) within a sidelink control channel on the second frequency band and user data traffic corresponding to the SCI within a sidelink data channel on the second frequency band.