Abstract:
In a network node, wireless device, or both, a method for controlling activation or deactivation of a small cell activity of a portable multi-purpose wireless device in a wireless communications network may include determining a geographic location of a portable multi-purpose wireless device. The device may be capable of two or more different states of small cell activity, including an activated state, a deactivated state, or a latent state. The method may include controlling a current one of the two or more different states of the small-cell capability of the portable multi-purpose wireless device, based at least in part on the geographic location. The network node, the wireless device, or both may activate or deactivate the small cell activity, or place it into a latent state, based on additional factors. In addition to its small cell capabilities, the wireless device may perform user function unrelated to the wireless network.
Abstract:
A network node may receive a notification of a capability of a user equipment (UE) to support multiple subscriber identity modules (SIMs). The multiple SIMs may enable the UE to communicate with multiple network nodes. The network node may modify a communication parameter of the network node based on the notification.
Abstract:
Systems and methods are described herein, a method including, but not limited to, transmitting, at a first frame time, a first number of redundant data packets; transmitting, at a second frame time, a second number of redundant data packets in response to data packet loss beyond a predetermined tolerance level, the second number being greater than the first number; and transmitting, at a third frame time, a third number of redundant data packets, the third number is between the first number and the second number.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus provides or enables dynamic cooperative wireless data delivery service based on dynamic proximate locations of mobile nodes in wireless networks. A source wireless terminal may offload data for delayed transmission by a neighboring wireless terminal. The source may attempt delayed data transmission via any cooperating neighboring node (mule), whether mobile or stationary. A utility function may be used to compare costs of communicating via direct links or through opportunistically available links provided by mules. The mule may advertise availability of indirect data delivery service including probable latency time associated with the indirect delivery service.
Abstract:
A UE may use a same antenna for both Bluetooth communications and WWAN cell search and measurement operations. In order to avoid interference, the UE may adjust the periodicity of the WWAN cell search and measurement operations. Adjustment of the WWAN cell search and measurement periodicity may be based on a link quality of the Bluetooth communications.
Abstract:
Methods, systems, and devices are described for control information processing and utilization in a wireless communications system that utilizes one or more flexible bandwidth carriers. The methods may include receiving control information over a first channel of one of the one or more flexible bandwidth carriers, determining a processing time for the received control information over the first channel of the one of the one or more flexible bandwidth carriers based on a processing time of control information for another bandwidth carrier, and utilizing the received control information over the first channel of the one of the one or more flexible bandwidth carriers during a first transmission time interval of the first channel of the one of the one or more flexible bandwidth carriers subsequent to the processing time for the received control information over the first channel of the one of the one or more flexible bandwidth carriers.
Abstract:
Methods, systems, and devices are described for mobility robustness optimization. A network may be organized into base station clusters, and mobility information may be exchanged within the cluster. Each base station may then receive statistics based on the collected information. In some examples the cluster mobility statistics are used to generate a handover transition matrix identifying a probability of a UE remaining with a target base station within the cluster for a threshold period following a handover from a source base station that is also within the cluster. Based on the cluster mobility statistics, the base station may determine that the probability of the UE remaining with the potential target base station for the threshold period is low. The base station may then select an alternative handover target. The base station may then adjust the mobility parameters of the UE in order to direct it to the alternative handover target.
Abstract:
In one or more access points of a wireless communication network, a method for participating in a distributed clustering process directed at defining clusters of access points wherein each of the clusters comprises a cluster head and associated member nodes includes determining a marginal cost of associating an access point to each of distinct clusters of access points, based on a defined cost function, and associating the access point to one of the clusters of APs for which the marginal cost is minimized. The method may be performed by multiple access points in a peer-to-peer fashion and iterated until a stable cluster configuration is obtained. A cluster head may similarly be appointed in a distributed fashion by a current cluster head comparing total cost functions between different cluster configurations with different cluster heads.
Abstract:
Methods, systems, and devices are provided for system information management in a wireless communications. A user equipment (UE) may identify a first value of a value tag in a first carrier, read a system information block (SIB) on the first carrier associated with the value tag, and identify a second value of the value tag in a second carrier. The UE may compare the first value with the second value and determine whether the read SIB on the first carrier may be utilized on the second carrier. Other techniques may include identifying a first value of a value tag for a first carrier linked with a SIB transmitted over the first carrier. The techniques may include determining a second value of the value tag for a second carrier indicating whether the SIB transmitted over the first carrier may be utilized on the second carrier.
Abstract:
An allocation technique is operable to allocate communication resources in multi-hop networks under the joint consideration of communication requirements and fairness. Embodiments operate to provide allocation of time slot resources in TDMA based multi-hop wireless networks under the joint consideration of QoS and fairness. Embodiments operate with respect to information regarding maximal common slot set flow contention. An iterative process is applied with respect to the information regarding maximal common slot set flow contention to allocate communication resources providing a balance between meeting communication requirements and fairness. According to embodiments, an inter-graph process iteratively selects a maximal common slot set for which resource allocation with respect to various flows is to be performed and an intra-graph process assigns communication resources in the maximal common slot set providing a balancing between meeting communication requirements (e.g., QoS) and providing fairness. Other aspects, embodiments, and features are also claim and described.