Abstract:
Column address A0-A11 is once predecoded by a first predecoder PD1, a second predecoder PD2, and a CDE buffer CDB and then applied to a column decoder CD. Column decoder CD selectively drives one of a plurality of column selecting lines CSL on the basis of the applied predecoded signals. This causes corresponding bit lines in respective memory cell arrays MCA1-MCA4 to be simultaneously selected. Column decoder CD includes a plurality of column drivers corresponding to the plurality of column selecting lines, and the column drivers are divided into a plurality of groups. The predecoded signals applied from second predecoder PD2 and CDE buffer CDB to column decoder CD are generated independently for respective groups, and signal lines for them are also distributed to respective groups. This causes the length of wiring of each predecoded signal line to be shortened.
Abstract:
A semiconductor memory device with a built-in cache memory comprises a memory cell array (1). The memory cell array (1) is divided into a plurality of blocks (B1 to B16). Each block is divided into a plurality of sub blocks each having a plurality of columns. At the time of a cache hit, block address signals (B0, B1) and a column address signal (CA) are simultaneously applied. Any of the plurality of blocks (B1 to B16) is selected in response to the block address signals (B0, B1). At the same time, any of the plurality of registers (16a) corresponding to the selected block is selected in response to the column address signal (CA). The data stored in the register (16a) is thereby read out at a high speed
Abstract:
In a block access memory in which the memory cell array is divided into a plurality of blocks and data input/output is carried out by block unit, each block is divided into a plurality of subblocks, and the timing of activating the word line and the timing of activating the sense amplifier are made different for each subblock in the block in which the selected word line is included, whereby the peak current associated with the bit line charge/discharge at the time of activating the sense amplifiers is reduced.
Abstract:
A DRAM for use in a simple cache memory system comprises a memory cell array divided into a plurality of blocks, a plurality of data registers provided corresponding to the respective blocks of the array for latching memory cell data of the corresponding blocks, and a selector responsive to a row address strobe signal for selecting access to either the data registers or the memory cell array. Upon cache hit, the row address strobe signal is inactivated to cause the selector to select the access to the data registers. Upon cache miss, the row address strobe signal is activated to cause the selector to select the access to the memory cell array.
Abstract:
A dynamic random access memory with a fast serial access mode for use in a simple cache system includes a plurality of memory cell blocks prepared by division of a memory cell array, a plurality of data latches each provided for each column in the memory cell blocks and a block selector. When a cache miss signal is produced by the cache system, data on the column in the cell block selected by the block decoder are transferred into the data latches provided for the columns in the selected block after selection. When a cache hit signal is produced by the cache system, the data latches are isolated from the memory cell array. Accessing is made to at least one of the data latches based on an externally applied column address on cache hit, and to at least one of the columns in the selected block based on the column address on cache miss.
Abstract:
A circuit for generating a boosted signal for a word line, coupled to a word line driving signal line for transmitting a voltage signal to the word line, coupled to a first power supply, and coupled to a second power supply for providing a voltage higher than the voltage of the first power supply, can supply a compensating voltage for the word line from the second power supply through the word line driving signal line when a voltage of the word line is decreased.
Abstract:
In a semiconductor memory device capable of nibble mode operation, the time period required from the time when CAS signal falls to the time when a data output buffer activating signal rises is made different at the time of a normal mode and at the time of a nibble mode, so that the time period required for reading out data in the nibble mode is reduced as compared with a conventional device.
Abstract:
A dynamic type MOS-RAM constructed of folded type bit lines and having sense operation cycles for amplifying potential difference appearing on respective pairs of bit lines after selection of a word line and restore operation cycles for further amplifying the potential difference on the pairs of bit lines after the sense operation cycles, wherein non-selected word lines are completely brought into electrically floating states in intervals including the sense operation cycles and the restore operation cycles.
Abstract:
Each of the memory cells forming a nonvolatile RAM comprises one floating-gate transistor and one capacitor. When the power source is turned on, storage of information is performed according to the amount of electric charge stored in each capacitor. When the power source is turned off, nonvolatile storage of information is performed according to the level of the threshold voltage of each floating-gate transistor.
Abstract:
A semiconductor memory comprises memory cells (15-18, 27-30), a data writing terminal (1), a data readout terminal (48), transistors (3-10, 35-42), address signal input terminals (23-26), subdecode signal input terminals (43-46), driving signal generating circuits (49-52), parallel readout circuits (79-82) and test mode switching signal input terminal (53, 88). In writing of function test data for the memory cells, the driving signal generating circuits turn all of the transistors (3-10) on in response to a test mode switching signal with no regard to address signals, thereby to simultaneously write data in the memory cells (15-18). Further, in readout of the function test data for the memory cells, the parallel readout circuits read the storage contents of the memory cells (27-30) storing the test data in response to a test mode switching signal with no regard to subdecode signals. Logic circuit means (90, 91, 94) may be provided to output logical value corresponding to the test data stored in the memory cells when all of the logical values of the test data are at the same level.