Abstract:
A circuitized substrate which includes a high temperature dielectric material in combination with a low temperature conductive paste, the paste including an organic binder component and at least one metallic component. The flakes of the metallic component are sintered to form a conductive path through the dielectric when the dielectric is used as a layer in the substrate.
Abstract:
A method of making a circuitized substrate such as a laminate chip carrier in which a polymer, e.g., Teflon, is used as a dielectric layer and a promotion adhesion layer of a polymer is used to securely adhere a conductive layer thereto which is deposited by plating. The resulting product is thus able to provide extremely narrow conductive circuitry for subsequent connections, e.g., to a semiconductor chip. Electroless plating is the preferred plating method with the dielectric immersed in a solution of conductive monomers, e.g., pyrrole monomer, the solution also possibly containing a seed material such as palladium-tin.
Abstract:
An electronic package and method of making the electronic package is provided. A layer of dielectric material is positioned on a first surface of a substrate which includes a plurality of conductive contacts. At least one through hole is formed in the layer of dielectric material in alignment with at least one of the plurality of conductive contacts. A conductive material is positioned in the at least one through hole substantially filling the through hole. At least one conductive member is positioned on the conductive material in the through hole and in electrical contact with the conductive material. The electronic package improves field operating life of an assembly which includes a semiconductor chip attached to a second surface of the substrate and a printed wiring board attached to the conductive members.
Abstract:
A signal processing module can be manufactured from a plurality of composite substrate layers, each substrate layer includes elements of multiple individual processing modules. Surfaces of the layers are selectively metalicized to form signal processing elements when the substrate layers are fusion bonded in a stacked arrangement. Prior to bonding, the substrate layers are milled to form gaps located at regions between the processing modules. Prior to bonding, the leads are positioned such that they extend from signal coupling points on said metalicized surfaces into the gap regions. The substrate layers are then fusion bonded to each other such that the plurality of substrate layers form signal processing modules with leads that extend from an interior of the modules into the gap areas. The individual modules may then be separated by milling the substrate layers to de-panel the modules.
Abstract:
The present invention discloses a method for modificating a fluoropolymer. First, a fluoropolymer is provided, and then a hydrogen plasma treatment is performed on the fluoropolymer, so that C—H group is introduced to the surface of the fluoropolymer to form an intermediate. Next, an ozone treatment is performed on the intermediate, wherein the C—H group serves as ozone accessible site to form peroxide, and a first modified fluoropolymer is then formed. Finally, a grafting polymerization is initiated from the peroxide of the first modified fluoropolymer in the presence of a composition comprising at least one functional monomer, so as to form a second modified fluoropolymer. Furthermore, this invention also discloses methods for fabricating metal-clad laminates.
Abstract:
An improved circuit substrate is provided wherein glass cloth is completely embedded within fluoropolymer by thermocompression to form a composite structure, which when containing an adhesive agent such as the combination of functional groups and liquid crystal polymer is self-adhering to a metal layer such as of copper.
Abstract:
A circuitized substrate which includes a conductive paste for providing electrical connections. The paste, in one embodiment, includes a binder component and at least one metallic component including microparticles. In another embodiment, the paste includes the binder and a plurality of nano-wires. Selected ones of the microparticles or nano-wires include a layer of solder thereon. A method of making such a substrate is also provided, as are an electrical assembly and information handling system adapter for having such a substrate as part thereof.
Abstract:
A circuitized substrate which includes a high temperature dielectric material in combination with a low temperature conductive paste, the paste including an organic binder component and at least one metallic component. The flakes of the metallic component are sintered to form a conductive path through the dielectric when the dielectric is used as a layer in the substrate.
Abstract:
The present invention comprises methods and compositions of dielectric materials. The dielectric materials of the present invention comprise materials having a dielectric constant of more than 1.0 and less than 1.9, or a dissipation factor of less than 0.0009, or a material having a dielectric constant of more than 1.0 and less than 1.9, and a dissipation factor of less than 0.0009. Other characteristics include the ability to withstand a wide range of temperatures, from both high temperatures of approximately +260° C. to low temperatures of approximately −200° C., operate in wide range of atmospheric conditions and pressures, such as a high atmosphere, low vacuum such as found in outer space as well as at sea level or below sea level, and is used in the manufacture of composite structures that can be used alone or in combination with other materials, and can be used in electronic components or devices.
Abstract:
The present invention provides fluoropolymer laminates having isotropic properties. For example, an embodiment in which multiple fluoropolymer sheets having an liquid crystalline polymer oriented in the fibrous state in the melt processible fluoropolymer are laminated, despite having the fibrous LCP oriented in one direction in each single extruded sheet, makes it possible to laminate in such a way as to compensate for their orientation directions, the laminate thereby becoming isotropic as regards physical properties. The laminates also have low linear coefficient of expansion and low thermal shrinkage as well as elevated tensile modulus and low dielectric constant.