Abstract:
A gas detector that includes at least one source of infrared radiation, at least two analytical detectors, each analytical detector adapted to provide an output signal indicative of a first gas of interest and positioned to receive radiation from the source of radiation, at least one reference detector adapted to receive radiation of a predetermined wavelength, a sample chamber for receiving a gaseous sample, and an optical path length disposed between the source of radiation and the analytical detectors and passing through the sample chamber.
Abstract:
A rugged, miniature, spectroscopic gas analyzer apparatus for rapid, non-invasive, multi-component breath monitoring and analysis and subsequent determination of Q or other medical diagnostic applications. The system is comprised of one or more IR emitters focussed by optical elements through a low volume sample cell receiving a sample input of a patient's breath for analysis. The patient either at rest or during exercise, inhales C2H2—SF6 mixtures (balance of oxygen and nitrogen) which is subsequently monitored upon exhalation for CO2, H2O, C2H2, and SF6 which can be employed to determine Q directly and accurately. Measurements are performed in real-time or via post-processing of stored original data. Due to its small size, ruggedness, and low power consumption, the monitor can conveniently be employed in the field or data can also be retrieved remotely using telemetry. The miniature analyzer operates on the principle of infrared absorption spectroscopy and allows very precise concentration measurements of the analytes of interest, without any bias or interference from other matrix components.
Abstract translation:一种坚固,微型的光谱气体分析仪,用于快速,无创,多组分呼吸监测和分析,随后确定Q或其他医疗诊断应用。 该系统由一个或多个由光学元件聚焦的IR发射器组成,所述IR发射器通过接收患者呼吸的样本输入的低体积样本细胞进行分析。 患者在休息或运动期间吸入C 2 2 H 2 -SF 6 N 6混合物(余量的氧气和氮气),随后监测 在CO 2气体,H 2 O,C 2 H 2 H和SF 6的气体呼气时, / SUB,可直接,准确地确定Q。 通过实时或经过后处理存储的原始数据进行测量。 由于其体积小巧,坚固耐用,功耗低,可以方便地在现场使用显示器,也可以使用遥测方式远程检索数据。 该微型分析仪的工作原理是红外吸收光谱,并且可以非常精确的浓度测量所关注的分析物,没有任何来自其他基质组分的偏差或干扰。
Abstract:
A spectrometer or multiple wavelength absorbance detection method and apparatus providing improved accuracy for an array of measurements at different wavelengths. The spectrometer utilizes a multiple wavelength illumination system with an array of independent detectors with different pathlength cells, where each cell is illuminated with predominately monochromatic light after separation by a light dispersing element. Each sample cell has an optical pathlength, optics and photodetection device that are optimized for its particular wavelength to accurately measure absorbance through an expected substance.
Abstract:
An agent gas analyzer that will determine the types and measure simultaneously the concentrations of a plurality of agent gases in a respiratory gas stream of an anesthetized patient, with the analyzer self-determining the agent gas types and concentrations each time gas measurements are made.
Abstract:
A gas analyzer system and method for detecting and displaying information of gases in a respiratory gas stream, comprising an optical bench including a gas pathway for the flow of a gas stream through the optical bench, a flow shaping inlet at the entrance to the optical bench's gas pathway, two infrared detection channel assemblies for measuring the partial pressures of the gases in the respiratory gas stream, a pressure sensor for measuring the pressure within the gas pathway, a temperature sensor for measuring the temperature within the optical bench, and a flow rate sensor for measuring the gas flow rate through the gas pathway, circuitry for processing the detected partial pressures of the gases and the measured values for pressure, temperature, and flow rate, and for providing output signals indicative of processed measured values, the detected partial pressures of the gasses, and characterization information with respect to the optical bench components; analog input circuitry for processing the signals output from the optical bench for input to analog processing circuitry; analog processing circuitry for processing and correcting at least the detected partial pressures of the gases signals for collision broadening, temperature, pressure in the gas pathway, barometric pressure, cross-correction, and characterization of the optical bench components, and providing output signals indicative of the corrected partial pressures of the gases to display processing circuitry; display processing circuitry for processing the signals for display of at least the corrected partial pressure of one gas on a cathode ray tube.
Abstract:
A multiple wavelength light spectrophometer for non-invasive monitoring of a body organ in vivo comprising: a single pulsed light source, optical fibers for transmitting to and receiving the infrared radiation from the organ, a radiation detector capable of branching received radiation into several different wavelengths, an amplifier, and a data acquisition system including a microprocessor capable of compensating for light diffusion effects by employing a specific algorithm.
Abstract:
An improved gas analyzer system (FIG. 1) and method of use for detecting and displaying the partial pressures of certain constituent gases in a respiratory gas stream, the system comprising an optical bench (111) through which a respiratory gas flows and in which measurements of the gas are taken; analog input circuits (122) for receiving signals output from the optical bench (111) through which a respiratory gas flows and in which measurements of the gas are taken; analog processing circuits (124) for processing signals output from the analog input circuits (122); display processing circuits (128) for processing the signals output from the analog processing circuits (124) and other system circuitry; pixel logic circuits/analog outputs (130) for processing signals output from the display processing circuitry (128) and providing analog output ports; a five button panel (148), an alarm/knob board (144), and a speaker driver (152) for operator interface and activation of audible and visual alarms; a CRT driver for driving a CRT; and a power supply (158) for powering the system.
Abstract:
An optical system for a multidetector array spectrophotometer which includes multiple light sources for emitting light of selected wavelength ranges and means for selectively transmitting the selected wavelength ranges of light to respective slits of a multi-slit spectrograph for multiple wavelength range detection. The spectrograph has two or more slits which direct the selected wavelength ranges of the light spectra to fall upon a dispersive and focusing system which collects light from each slit, disperses the light by wavelength and refocuses the light at the positions of a single set of detectors.
Abstract:
A multi-component non-dispersive gas analyzer of a type typically used to measure the concentrations of gases present in automotive emissions and in breath analyzers has no moving parts and employs electrically operated means for effectively inserting and removing a reference cell from the optical path and for selecting a particular filter to determine momentarily the wavelengths of radiation being examined. The means for accomplishing these ends include a substrate on which a layer of vanadium dioxide is deposited. The layer is a good reflector at temperatures greater than 67.degree. C. and reflects only slightly at lower temperatures. The layer is alternately heated by an electrical current and is then allowed to cool to provide the desired optical switching action. This electrically-controlled selectively reflective layer is then used in conjunction with the reference cell and with an array of filters to implement the necessary switching and selection of the components.
Abstract:
Apparatus is disclosed to accurately measure and analyze multiple component interfering gases which coexist in the stack gas effluent generated from a combustion process which utilizes a non-dispersive, narrowband infrared absorption technique. The apparatus includes a probe in the stack with an optical measurement cavity (34) through which the stack gases are passed. A transceiver (14) mounted to the probe includes an optical portion operatively associated with the measurement cavity including a chopped light source (54), (60), (62) for projecting beams of light into the measurement cavity and a detector (86) for detecting the attenuation of the gases to provide a measure of the extent of absorption of each gas of interest. A control unit, preferably remote from the transceiver, preferably a programmed digital computer, and preferably via a J-box (18) converts the electric outputs to a corresponding % modulation and in turn corrects for temperature, pressure and interference between gases. The results may be displayed on a front panel (174) or used, for example, to maximize efficiency in a combustion process.