Abstract:
This disclosure provides a method for imaging lymph nodes and lymphatic vessels without a contrast agent. The method includes providing, using an optical source, an infrared illumination to a region of a subject having at least one lymphatic component, detecting a reflected portion of the infrared illumination directly reflected from the region using a sensor positioned thereabout, and generating at least one image indicative of the at least one lymphatic component in the subject using the reflected portion of the infrared illumination.
Abstract:
A blood coagulation analyzer and analyzing method perform following: (a) preparing a measurement specimen by dispensing a blood specimen and a reagent into a reaction container; (b) emitting light of a plurality of wavelengths to the measurement specimen in the reaction container, the wavelengths comprising a first wavelength for use in a measurement by a blood coagulation time method, and at least one of a second wavelength for use in a measurement by a synthetic substrate method and a third wavelength for use in a measurement by an immunoturbidimetric method; (c) detecting light of a plurality of wavelengths corresponding to the light emitted in (b), from the measurement specimen, by a light receiving element, and acquiring data corresponding to each wavelength; and (d) conducting an analysis based on the data corresponding to one of the wavelengths among the acquired data, and acquiring a result of the analysis.
Abstract:
An embodiment of the present disclosure provides a spectrum inspecting apparatus. The apparatus includes a laser source; a focusing cylindrical lens configured to converge a light beam onto a sample; a light beam collecting device configured to collect a light beam signal, which is excited by the light beam, from the sample, so as to form a strip-shaped light spot; a slit configured to receive the collected light beam and couple it to downstream of a light path; a collimating device; a dispersing device configured to disperse the collected light beam so as to form a plurality of sub-beams having different wavelengths; an imaging device configured to image the sub-beams on the photon detector array respectively, wherein the light beam emitted from the laser source has a rectangular cross-section, the strip-shaped light spot impinges on the slit and its length is smaller than a length of the slit.
Abstract:
A sensor apparatus having a sensor unit. The sensor unit including pixel assemblages on a substrate upper side of a substrate located on a lower side of the sensor unit; a cap, on the substrate upper side, which covers the pixel assemblages, a cavity being formed between the substrate upper side and the cap; a plurality of filters that are transparent to wavelength regions that differ from one another, exactly one pixel assemblage being associated with each filter; and the filters being on the cap so that the infrared radiation propagated through an absorption gap of the sensor apparatus and the upper side of the sensor unit is detectable, through the respective filter, by the pixel assemblage associated with the respective filter; and a coating made of a light-absorbing and/or light-reflecting material being configured at least locally on a part of the cap which is not covered by the filters.
Abstract:
Apparatuses and methods are disclosed for performing a light-absorption measurement on a test sample and a compliance measurement on a reference sample. A method includes moving a reference sample receptacle carrier of an apparatus to position a first reference sample receptacle received in the carrier at a second position in a light path, directing light from an illumination system to a detection system along the light path to perform a light-absorption measurement on a first reference sample at the second position, moving the carrier to position the first receptacle out of the light path, placing a test sample receptacle in a test sample receptacle holder of the apparatus in the light path at a first position different from the second position, and directing light along the light path to perform a light-absorption measurement on a test sample in the test sample receptacle holder at the first position.
Abstract:
Disclosed are security articles and methods and systems for authenticating security articles using a plurality of stimuli. According to one embodiment, an illustrative secured article includes an embedded feature wherein differential activation of phosphorescent or fluorescent materials creates a machine readable response through the simultaneous presence of a source of electromagnetic radiation and a specific gas environment. A detector detects a differential spectral emission across the security feature that results from the change in gas environment. The spectral emission may be compared to an expected emissive signature to determine authenticity of the security article.
Abstract:
A system and method are disclosed for configuring an integrated computational element (ICE) to measure a property of a sample of interest. The system includes an illumination source to provide a sample light which is reflected from or transmitted through a sample. A dispersive element disperses the sample light into wavelength portions. An intensity modulation device having an array of electronically controllable modulation elements is disclosed that forms a pattern which modulates the dispersed sample light. Collection optics focuses the modulated sample light on a detector, which generates a signal that correlates to a property of the sample. The electronically controllable modulation elements can be readily altered to conform to a different measurable property of a sample of interest as desired.
Abstract:
Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively, the first and second computational elements are configured to be either positively or negatively correlated to the characteristic of the sample. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.
Abstract:
Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively, the first and second computational elements are configured to be either positively or negatively correlated to the characteristic of the sample. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.
Abstract:
A tissue analyte measuring device (2) includes a light source (4) structured to emit unpolarized light toward the skin surface of a subject, and a detector assembly (8) configured to receive light reflected the skin surface of the subject and the transcutaneous tissues of the subject, the detector assembly including a polarizing filter (12) and a number of light detector subassemblies (14). The polarizing filter is structured to filter out s-polarized light and pass only p-polarized light to light detector subassemblies. The light source is structured and positioned to emit the unpolarized light in a manner wherein the unpolarized light will exit the measuring device at a predetermined angle with respect to a normal to a light emitting plane of the measuring device, wherein the predetermined angle is an angle (the Brewster's angle) at which only s-polarized light will be reflected by the skin surface when the unpolarized light is incident thereon.