Abstract:
Process for enhanced metal recovery from, for example, metal-containing feedstock using liquid and/or supercritical fluid carbon dioxide and a source of oxidation. The oxidation agent can be free of complexing agent. The metal-containing feedstock can be a mineral such as a refractory mineral. The mineral can be an ore with high sulfide content or an ore rich in carbonaceous material. Waste can also be used as the metal-containing feedstock. The metal-containing feedstock can be used which is not subjected to ultrafine grinding. Relatively low temperatures and pressures can be used. The metal-containing feedstock can be fed into the reactor at a temperature below the critical temperature of the carbon dioxide, and an exotherm from the oxidation reaction can provide the supercritical temperature. The oxidant can be added to the reactor at a rate to maintain isothermal conditions in the reactor. Minimal amounts of water can be used as an extractive medium.
Abstract:
Present invention describes a biotechnological procedure to remove magnetic sulfur impurities from iron concentrate, CHARACTERIZED because it includes: to bioleach iron concentrate ores agglomerated in heaps under temperature condition between 5 and 35° C., inoculating the iron concentrate ores with Acidithiobacillus thiooxidans cultures, with an inoculum concentration 104 and 106 cel/g and addition of water supplemented with nitrogen and phosphorous source (0.01 to 0.5 g (NH4)2HPO4/L), without potassium addition, adjusting pH between 1.0 and 9.0, and a feeding rate between 5 and 15 L/h/m2; this procedure allows a removal efficiency above 80% in 21 days, with a maximum iron loss of 3%.
Abstract translation:本发明描述了从铁精矿中除去磁性硫杂质的生物技术程序,其特征在于它包括:在5至35℃的温度条件下将沉淀的铁精矿矿石堆积在堆中,用硫酸氧化硫杆菌培养物接种铁浓缩物矿石, 接种物浓度104和106cd / g,并加入补充有氮和磷源(0.01至0.5g(NH 4)2 HPO 4 / L)的水),不加钾,调节pH在1.0和9.0之间,并且进料速率在5和 15 L / h / m2; 该程序允许21天内的去除效率高于80%,最大铁损为3%。
Abstract:
A process for the extraction of copper from a feed material comprising at least one of arsenic and antimony-bearing copper sulphide minerals is provided. The process includes fine-grinding the feed material and after fine-grinding, subjecting the feed material to pressure oxidation in the presence of surfactant and a halogen to produce a product slurry. The process also includes subjecting the product slurry to liquid/solid separation to obtain a pressure oxidation filtrate and solids comprising at least one of a compound of arsenic and a compound of antimony, and recovering copper from the pressure oxidation filtrate.
Abstract:
The object of the invention is the plasmid pSheB, particularly a plasmid which may comprise a fragment of pSheB including the arr module and functional derivatives thereof, and strains containing such a plasmid, preferably the Shewanella sp. strain, deposited as KKP 2045p, which are capable of removing arsenic by dissolution of minerals and reduction of arsenates to arsenites. The object of the invention is also the method and the use of such bacterial strains or compositions which may comprise them, for the selective removal of arsenic from mineral resources, raw materials industry waste or soil.
Abstract:
A continuous process of desulfurizing coal and other ores contaminated with sulfur and recovering the sulfur in relatively pure crystal form, the process for coal including the steps of crushing sulfur bearing coal ore, mixing the crushed ore in a solvent forming a solvent liquor in which the sulfur is dissolved, centrifuging the solvent liquor separating a coal slurry from the solvent liquor, centrifuging the coal slurry separating the coal from the tailings including rare metals for further refining to recover the rare metals, drying the coal slurry and recovering the solvent, filtering the remaining solvent liquor removing ash, crystallizing the sulfur in the filtered solvent, centrifugally separating the crystallized sulfur from the solvent and recovering the solvent, drying the crystallized sulfur and further recovering the solvent, heating the crystallized sulfur to form a sulfur liquid and casting the sulfur in preformed molds to produce building materials.
Abstract:
A process for removing sulfur from sulfide-bearing ores by reacting water vapor with the sulfide-bearing ore forming hydrogen sulfide while simultaneously regenerating water vapor by reacting the hydrogen sulfide with lime. Advantageously, the process occurs in the absence of a net consumption or production of gaseous species so that the process can be carried out in a closed system with respect to the gaseous species. Sulfide-bearing ores which can be treated using the process of this invention include sulfide-bearing ores of molybdenum, zinc, iron, mercury, and copper. Advantageously, the molybdenum oxide so produced from the sulfide-bearing ore of molybdenum can be reacted further with lime and water producing calcium molybdate and hydrogen. The chalcopyrite form of the sulfide-bearing ore of copper produces bornite and magnetite.
Abstract:
In a process for beneficiating one or more mineral values of sulfide ores by treating the sulfide ore with a metal containing compound under conditions such as to selectively enhance the magnetic susceptibility of the mineral values to the exclusion of the gangue in order to permit a separation between the values and gangue, the improvement comprising pretreating the sulfide ore by heating it to a temperature of at least about 80.degree. C. for at least about 0.1 hours.
Abstract:
One or more mineral values of sulfide ores are beneficiated by cotreating the sulfide ore with a metal containing compound and a reducing gas under conditions such as to selectively enhance the magnetic susceptibility of the mineral values to the exclusion of the gangue in order to permit a physical separation between the values and gangue.
Abstract:
In a process for beneficiating one or more mineral values of a metal oxide ore selected from the group consisting of bauxite, taconite, chrysocolla, apatite, titanium oxides and the metal oxides of Groups IIIB, IVB, VB, VIB, VIIB, VIIIB, IB, IIB and IVA by treating the ore with a metal containing compound, preferably iron carbonyl, under conditions such as to selectively enhance the magnetic susceptibility of the mineral values to the exclusion of the gangue in order to permit a separation between the values and gangue, the improvement comprising pretreating the metal oxide ore by heating it to a temperature of at least about 80.degree. C. for a time period of at least about 0.1 hours.
Abstract:
A process for removing sulfur impurities from a fluid, such as flue gas or a petroleum fraction, comprises contacting the fluid with a solid, porous silver article under conversion conditions which cause said sulfur impurity to be removed from said fluid by said silver article.