Abstract:
The method and the device serve to treat the flue dust formed during the production of nonferrous metals. After the addition of sulfur and/or a sulfur compound, the flue dust is heated, and volatile compounds are separated in a downstream offgas treatment unit. The flue dust is heated in an inert atmosphere.
Abstract:
The present invention relates to a method of treating lead anode slime having high fluorine and arsenic content, in particular to a method comprising smelting of the lead anode slime and cleaning the produced off gases in a one or more wet gas cleaning stages.
Abstract:
A process for the extraction of copper from a feed material comprising at least one of arsenic and antimony-bearing copper sulphide minerals is provided. The process includes fine-grinding the feed material and after fine-grinding, subjecting the feed material to pressure oxidation in the presence of surfactant and a halogen to produce a product slurry. The process also includes subjecting the product slurry to liquid/solid separation to obtain a pressure oxidation filtrate and solids comprising at least one of a compound of arsenic and a compound of antimony, and recovering copper from the pressure oxidation filtrate.
Abstract:
To provide a method of generating, with good reproducibility and ease and without complicated operations, scorodite which satisfies the elution standard (in accordance with Notification of No. 13 of Japanese Environment Agency) and which has good filterbility and stability for processing arsenic contained in a diarsenic trioxide form. A method of processing diarsenic trioxide, including: a leaching step of adding water to diarsenic trioxide to produce slurry, heating the slurry, and leaching arsenic while adding an oxidant to obtain leachate; a deoxidization step of removing the oxidant so as to obtain an adjusted solution; and a crystallizing step of converting arsenic in the adjusted solution to scorodite crystal.
Abstract:
There is provided a method for recovering a powder of a compound of iron and arsenic, which has a very low concentration of arsenic eluted from the powder, by treating an arsenic containing solution, e.g., a high purity and high concentration arsenic containing solution obtained by treating an arsenic containing substance which contains various elements other than arsenic, such as an intermediate product in a non-ferrous metal smelting or refining process. Ferrous ions are added to an arsenic containing solution, which contains 10 g/L or more of arsenic, so as to cause the ratio (Fe/As) of iron to arsenic in the solution to be not less than 1, and an oxidizing agent is added to the solution to allow a reaction at a temperature of not lower than 70° C. while stirring the solution. Then, a solid-liquid separation is carried out, and a solid part separated by the solid-liquid separation is dried.
Abstract:
Processes and materials for phytoremediating water-containing sites which have been contaminated with pollutants such as arsenic, phosphorous, or other metals. Fern plants can be used to accumulate pollutants from contaminated water-containing sites having an aqueous solution, waste water, ground water, surface water, combinations thereof, and combinations of water-containing sites with soils and/or sediments. The fern plants remove pollutants from the water-containing sites, and can be harvested and readily disposed of, or can be treated to recover the pollutant.
Abstract:
Processes, methods, materials and compositions for phytoremediating contaminated waters, which have been contaminated with pollutants such as arsenic, phosphorous, or other metals. Fern plants can be used to accumulate pollutants from contaminated water, including aqueous solution, waste water, ground water, surface water, combinations thereof. Pollutants and contaminants can be removed from the water, soil and wetland type environment via foliar application, excised leaflets, and/or through compositions of ground leaflets. The biomass can be harvested and readily disposed of, or can be treated to recover the pollutants and contaminants.
Abstract:
Processes, methods, materials and compositions for phytoremediating contaminated waters, which have been contaminated with pollutants such as arsenic. Fern plants that include Pteris and non-Pteris fern plants can be used to accumulate pollutants from contaminated water, including aqueous solution, waste water, ground water, surface water, combinations thereof. Pollutants and contaminants can be removed from the water, soil and wetland type environment via phytoremediation through roots and fronds as well as by applying excised portions of plants such as leaflets (cut-off fronds). The biomass can be harvested and readily disposed of, or can be treated to recover the pollutants and contaminants.
Abstract:
The invention provides processes and materials for phytoremediating materials which has been contaminated with arsenic, phosphorous, or other metals. In a preferred embodiment, the subject invention provides fern plants, which accumulate arsenic from contaminated materials. The fern plants efficiently remove arsenic from the materials. The fern plants can be harvested and readily disposed of, or can be treated to recover arsenic.
Abstract:
The present invention is directed to an apparatus and method for recovering the group III elemental component of a group III-V material waste material. The method includes heating, under a reduced pressure, solid waste materials which contain group III-V material to cause the group III-V material to separate into a group III element and a group V element vapor; drawing off the group V element vapor; condensing the group V element vapor to produce a condensed group V element solid; and zone refining the group III element to produce a purified group III element. The apparatus is designed to carry out this method in the plant which manufactures the group III-V waste material.