Abstract:
The present invention relates to new crystalline zeolite SSZ-42 prepared by processes for preparing crystalline molecular sieves, particularly large pore zeolites, using an organic templating agent selected from the group consisting of N-benzyl-1,4-diazabicyclo�2.2.2!octane cations and N-benzyl-1-azabicyclo�2.2.2!octane cations.
Abstract:
The present invention concerns a regeneration process for a catalyst containing at least one metallic element selected from the group formed by platinum, palladium, ruthenium, rhodium, osmium, iridium and nickel, preferably platinum, on a refractory oxide based support, which has been deactivated by coke deposition. The regeneration process is characterised in that said regeneration consists of treatment with a gas containing at least chlorine and molecular oxygen, at a temperature between 20.degree. C. and 800.degree. C. and a total gas flow rate, expressed in liters of gas per hour and per gram of catalyst, of between 0.05 and 20. The process at least restores the initial catalytic properties of the catalyst.
Abstract:
There is provided a process for the aromatization of non-aromatic hydrocarbons having at least six carbon atoms. The non-aromatic feed is contacted with a catalyst which includes a base metal or noble metal which is incorporated into or onto a pillared layered silicate. A preferred pillared layered silicate is kenyaite containing interspathic silica, and a preferred base metal or noble metal is chromium.
Abstract:
Catalysis of the reaction to produce styrene from n-octane in the presence of catalysts comprising a dehydrogenation metal and a microporous crystalline material containing a modifier selected from the group consisting of tin, lead and thallium, is described.
Abstract:
A zeolite related to zeolite L and having a characteristic cylindrical morphology may be prepared from a crystallization gel comprising (in mole ratios of oxides):K.sub.2 O/SiO.sub.2 --0.22-0.36H.sub.2 O/K.sub.2 O--25-90SiO.sub.2 /Al.sub.2 O.sub.3 --6-15and preferably with the mole ratio H.sub.2 O/K.sub.2 O+Al.sub.2 O.sub.3 +SiO.sub.2 being at least 8. The cylindrical Zeolite L may be used as a catalyst base in aromatization of acyclic hydrocarbons with high benzene yields being sustained over commerically feasible periods.
Abstract:
A new class of aluminosilicate zeolite catalysts is described, comprising a crystalline aluminosilicate zeolite modified by the incorporation therein of ammonia in nonzeolitic form. They are prepared by ammoniating the parent aluminosilicate at temperatures above about 350* C., with resultant displacement of water from the zeolite structure (''''dehydroammoniation''''). The ammonia is believed to be incorporated into the zeolite structure in the form of amide and/or imide groups bonded to silicon and/or aluminum atoms. The resulting compositions are found to display an unique selectivity for catalyzing carbonium ion reactions in hydrocarbon conversions, while competing free radical reactions (leading typically to polymerization and coke formation) are suppressed.
Abstract:
Processes are provided for conversion of oxygenated hydrocarbon, such as methanol and/or dimethyl ether, to aromatics, such as a para-xylene, and olefins, such as ethylene and propylene. The processes entail using a reactor having multiple reaction zones where each zone is prepared to promote desired reactions.
Abstract:
The invention relates to the hydrocarbon upgrading to produce aromatic hydrocarbon, to equipment and materials useful in such upgrading, and to the use of such upgrading for, e.g., producing aromatic hydrocarbon natural gas. The upgrading can be carried out in the presence of a dehydrocyclization catalyst comprising at least one dehydrogenation component and at least one molecular sieve.
Abstract:
The invention relates to producing aromatic hydrocarbon by aromatization of non-aromatic hydrocarbon, including feed pretreatment, aromatization of the aromatization feed's C2 hydrocarbon and C3+ non-aromatic hydrocarbon, and recovery of an aromatic product. The invention also relates to modules for carrying out the pretreatment, aromatization, and recovery, and also modules for auxiliary function such as power generation.
Abstract:
Methods and apparatuses for processing hydrocarbons are provided. In one embodiment, a method for processing hydrocarbons includes providing a stream of olefins including normal olefins and non-normal olefins. The method includes separating the normal olefins from the non-normal olefins to form a stream of normal olefins. Further, the method polymerizes the stream of normal olefins to form a stream of polymerized normal olefins. The method also includes saturating the stream of polymerized normal olefins to form a stream of normal paraffins.