Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
The present invention describes a method for fabricating micro-devices comprising aluminumoxide structures without the need for an extra lithographical processing step. So, no extra mask is needed. It appears that under certain circumstances, aluminumoxide walls arise in the etching process, just above sloped walls of underlying metal structures. The fact that the walls of the metal structures are sloped, is essential here. Using the method according to the invention, aluminumoxide structures can be fabricated that are aligned exactly above the sloped walls of the metal structure. These aligned aluminumoxide structures can be used as walls in for example microfluidic channels, electrowetting displays, electrophoretic displays or field emitting displays.
Abstract:
A method of manufacturing a metal microstructure by using a resin mold. In order to provide a method in which a mild manufacturing condition which causes less damage to the resin mold can be set and the high-precision metal microstructure can be mass-produced by uniform electroforming, the method of manufacturing the metal microstructure according to the present invention includes the steps of: fixing on a conductive substrate the resin mold having a vacant portion penetrating in the direction of thickness, by interposing a photosensitive polymer having a chemical composition changed by an electron beam, ultraviolet radiation or visible radiation so as to form a layered structure having the resin mold; exposing the layered structure having the resin mold to an electron beam, ultraviolet radiation or visible radiation; removing an exposed photosensitive polymer existing at the vacant portion of the resin mold; and filling with a metal the vacant portion of the layered structure having the resin mold by electroforming.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
An electroplating method includes forming a layer, the forming of the layer includes: a) contacting a substrate with a first article, the first article includes a support and a conformable mask disposed in a pattern on the support; b) electroplating a first metal from a source of metal ions onto the substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the substrate. The method may further involve one or more of (1) selectively depositing or non-selectively depositing one or more additional materials to complete formation of the layer, (2) planarizing deposited material after each deposition or after all depositions for a layer, and/or (3) forming layers adjacent previously formed layers to build up a structure from a plurality of adhered layers. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
A stamper-forming electrode material contains Cu as its main ingredient and at least one other element, preferably Ag and/or Ti. It is preferred that the Ag content be 10.0 wt % or less and that the Ti content be 5.0 wt % or less. A stamper-forming thin film is made of this stamper-forming electrode material, whereby its corrosion resistance is improved to suppress damage to itself, and a high-quality stamper can hence be formed.
Abstract:
This invention relates to the area of microelectromechanical systems in which electronic circuits and mechanical devices are integrated on the same silicon chip. The method taught herein allows the fabrication of thin film structures in excess of 150 microns in height using thin film deposition processes. Wafers may be employed as reusable molds for efficient production of such structures.
Abstract:
In the formation of microstructures, a preformed sheet of photoresist, such as polymethylmethacrylate (PMMA), which is strain free, may be milled down before or after adherence to a substrate to a desired thickness. The photoresist is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the photoresist material which has been rendered susceptible to the developer. Micrometal structures may be formed by electroplating metal into the areas from which the photoresist has been removed. The photoresist itself may form useful microstructures, and can be removed from the substrate by utilizing a release layer between the substrate and the preformed sheet which can be removed by a remover which does not affect the photoresist. Multiple layers of patterned photoresist can be built up to allow complex three dimensional microstructures to be formed.
Abstract:
In the formation of microstructures, a preformed sheet of photoresist, such as polymethylmethacrylate (PMMA), which is strain free, may be milled down before or after adherence to a substrate to a desired thickness. The photoresist is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the photoresist material which has been rendered susceptible to the developer. Micrometal structures may be formed by electroplating metal into the areas from which the photoresist has been removed. The photoresist itself may form useful microstructures, and can be removed from the substrate by utilizing a release layer between the substrate and the preformed sheet which can be removed by a remover which does not affect the photoresist. Multiple layers of patterned photoresist can be built up to allow complex three dimensional microstructures to be formed.
Abstract:
A micro handling device for handling micro objects and measuring forces exerted on the micro objects. The micro handling device can include a micro gripper and a micro spring configured as a force sensor connected to the micro gripper.