Abstract:
The invention provides a method for preparing a biological material for implanting. The invention also provides a biological material for surgical implantation. The invention further provides a biological composition for surgical implantation.
Abstract:
A multi-layer drug coated medical device such as for example an expandable vascular drug eluting stent is formed by vacuum pulse spray techniques wherein each layer is irradiated to improve adhesion and/or drug elution properties prior to formation of subsequent layers. Layers may be homogeneous or of diverse drugs. Layers may incorporate a non-polymer elution-retarding material. Layers may alternate with one or more layers of non-polymer elution-retarding materials. Polymer binders and/or matrices are not used in the formation of the coatings, yet the pure drug coatings have good mechanical and elution rate properties. Systems, methods and medical device articles are disclosed.
Abstract:
The invention provides for a method of improving bioactivity of a surface of an implantable object. The invention also provides for a method of improving bioactivity of a surface of biological laboratory ware. The invention further provide a method of attaching cells to an object. The invention even further provides for a method of preparing an object for medical implantation. The invention also provides for an article with attached cells, and for an article for medical implantation.
Abstract:
The invention provides a method for preparing a biological material for implanting. The invention also provides a biological material for surgical implantation. The invention further provides a biological composition for surgical implantation.
Abstract:
A medical device for surgical implantation adapted to serve as a drug delivery system has one or more drug loaded holes with barrier layers to control release or elution of the drug from the holes or to control inward diffusion of fluids into the holes. The barrier layers are non-polymers and are formed from the drug material itself by ion beam processing. The holes may be in patterns to spatially control drug delivery. Flexible options permit combinations of drugs, variable drug dose per hole, multiple drugs per hole, temporal control of drug release sequence and profile. Methods for forming such a drug delivery system are also disclosed.