Abstract:
Embodiments include apparatuses, methods, and systems to implement a multi-read and/or multi-write process with a set of memory cells. The set of memory cells may be multiplexed with a same sense amplifier. As part of a multi-read process, a memory controller coupled to a memory circuit may precharge the bit lines associated with the set of memory cells, provide a single assertion of a word line signal on the word line, and then sequentially read data from the set of memory cells (using the sense amplifier) based on the precharge and the single assertion of the word line signal. Additionally, or alternatively, a multi-write process may be performed to sequentially write data to the set of memory cells based on one precharge of the associated bit lines. Other embodiments may be described and claimed.
Abstract:
Embodiments include apparatuses, systems, and methods including a memory apparatus including a plurality of bit cells, wherein each of the plurality of bit cells correspond to a respective weight value and include a switch device that has a magnetic tunnel junction (MTJ) or other suitable resistive memory element to produce stochastic switching. In embodiments, the switch device may produce a switching output according to a stochastic switching probability of the switch device. In embodiments, a bit line or a source line passes a current across the MTJ for a switching time associated with the stochastic switching probability to produce the switching output which enables a determination of whether the respective weight value is to be updated. Other embodiments may also be described and claimed.
Abstract:
Some embodiments include apparatus and methods using a first ring oscillator, a second ring oscillator, and circuit coupled to the first and second ring oscillators. The first ring oscillator includes a first memory cell and a first plurality of stages coupled to the first memory cell. The second ring oscillator includes a second memory cell and a second plurality of stages coupled to the second memory cell. The circuit includes a first input node coupled to an output node of the first ring oscillator and a second input node coupled to an output node of the second ring oscillator. In one of such embodiments, the circuit can operate to generate identification information to authenticate the apparatus.
Abstract:
In accordance with various embodiments of this disclosure, stray magnetic field mitigation in an MRAM memory such as a spin transfer torque (STT) random access memory (RAM), STTRAM is described. In one embodiment, retention of bitcell bit value storage states in an STTRAM may be facilitated by generating magnetic fields to compensate for stray magnetic fields which may cause bitcells of the memory to change state. In another embodiment, retention of bitcell bit value storage states in an STTRAM may be facilitated by selectively suspending access to a row of memory to temporarily terminate stray magnetic fields which may cause bitcells of the memory to change state. Other aspects are described herein.
Abstract:
Described is an apparatus which comprises: a complementary resistive memory bit-cell; a first sense amplifier coupled to the complementary resistive memory bit-cell via access devices; a second sense amplifier coupled to the first sense amplifier and to the complementary resistive memory bit-cell via the access devices, wherein the second sense amplifier is operable to detect an error in the complementary resistive memory bit-cell.
Abstract:
Described is an apparatus which comprises: a complementary resistive memory bit-cell; and a sense amplifier coupled to the complementary resistive memory bit-cell, wherein the sense amplifier includes: a first output node; and a first transistor which is operable to cause a deterministic output on the first output node.