Abstract:
Disclosed is an arrangement for detecting first light (L1) and second light (L2), with the first light (L1) and second light (L2) having no wavelength in common. The arrangement includes a first effective detector area (D1) and a second effective detector area (D2). The first effective detector area (D1) is exposed to the first light (L1) and/or second light (L2) different from the first light (L1) and/or second light (L2) to which the second effective detector area (D2) is exposed when the arrangement is exposed to spatially uniformly distributed first light (L1) and second light (L2). The difference between the first light (L1) and/or second light (L2) to which said first detector area (D1) and second detector area (D2) are exposed to can be a difference in intensity and/or difference in an angle of incidence relative to the arrangement.
Abstract:
An opto-electronic module includes a detecting channel comprising a detecting member for detecting light and an emission channel comprising an emission member for emitting light generally detectable by said detecting member. Therein, a radiation distribution characteristic for an emission of light from said emission channel is non rotationally symmetric; and/or a sensitivity distribution characteristic for a detection in said detecting channel of light incident on said detection channel is non rotationally symmetric; and/or a central or main emission direction for an emission of light from said emission channel and a central or main detection direction for a detection of light incident on said detection channel are aligned not parallel to each other; and/or at least a first one of the channels comprises one or more passive optical components.
Abstract:
The illumination module for emitting light (5) can operate in at least two different modes, wherein in each of the modes, the emitted light (5) has a different light distribution. The module has a mode selector (10) for selecting the mode in which the module operates, and it has an optical arrangement. The arrangement includes—a microlens array (LL1) with a multitude of transmissive or reflective microlenses (2) which are regularly arranged at a lens pitch P (P1);—an illuminating unit for illuminating the microlens array (LL1). The illuminating unit includes a first array of light sources (S1) operable to emit light of a first wavelength L1 each and having an aperture each. The apertures are located in a common emission plane which is located at a distance D (D1) from the microlens array (LL1). In a first one of the modes, for the lens pitch P, the distance D and the wavelength L1 applies P2=2·L1·D/N wherein N is an integer with N≥1.
Abstract:
The optical module (1) comprises—a first member (O) having a first face (F1) which is substantially planar;—a second member (P) having a second face (F2) facing the first face (F1), which is substantially planar and is aligned substantially parallel to the first face;—a third member (S) comprised in the first member (O) or comprised in the second member (P) or distinct from and located between these, which comprises an opening (4);—a mirror element (31′; 31′″) present on the second face (F2); and—an active optical component (26) present on the second face (F2) and electrically connected to the second member (P); wherein at least one of the first and second members comprises one or more transparent portions (t) through which light can pass. The method for manufacturing the optical module (1) comprises the steps of a) providing a first wafer; b) providing a second wafer on which the mirror elements (31′. . . ) are present; c) providing a third wafer, wherein the third wafer is comprised in the first wafer or is comprised in the second wafer or is distinct from these, and wherein the third wafer comprises openings (4); e) forming a wafer stack comprising these wafers; wherein at least one of the first wafer and the second wafer comprises transparent portions (t) through which light can pass.
Abstract:
The disclosure describes various MEMS microphone modules that have a small footprint and can be integrated, for example, into consumer electronic or other devices in which space is at premium. Wafer-level fabrication techniques for making the modules also are described.
Abstract:
An optical device (1) includes two prism bodies (41, 42) and four side panels (71-74) attached to both prism bodies (41, 42). A cavity (9) is thereby enclosed. A first reflector (81) can be present at a first side face (81) of the first prism body (41), and a second reflector (82) can be present at a second side face (82) of the second prism body (42). At least one of the prism bodies (41, 42) and/or at least one of the side panels (71-74) can be at least in part made of a non-transparent dielectric material such as a printed circuit board. In some implementations, an optoelectronic component (90) can be attached to the respective constituent of the optical device (1).
Abstract:
A method for manufacturing one or more optical devices, each comprising a first member and a second member, and a spacer arranged between the first and second members. The method includes manufacturing a spacer wafer including a multitude of the spacers. Manufacturing the spacer wafer includes providing a replication tool having spacer replication sections; bringing the replication tool in contact with a first surface of another wafer; bringing a vacuum sealing chuck into contact with a second surface of the other wafer while the other wafer remains in contact with the replication tool; and injecting a liquid, viscous or plastically deformable material through an inlet of the vacuum sealing chuck so as to substantially fill the spacer replication sections.
Abstract:
This disclosure relates to illumination modules operable to increase the area over which an illumination source, such as a vertical-cavity surface-emitting laser or light-emitting diode, illuminates. Such illumination modules include a substrate having electrical contacts, an illumination source electrically connected to the substrate, a collimation assembly operable to collimate the light generated from the illumination source, a translation assembly operable to translate light over an area, and a mask assembly. In various implementations the illumination source may be rather small in area, thereby reducing the cost of the illumination module. Some implementations of the illumination module can be used for the acquisition of three-dimensional data in some cases, while in other cases some implementations of the illumination module can be used for other applications requiring projected light.
Abstract:
Various optoelectronic modules are described that include an emitter operable to produce light (e.g., electromagnetic radiation in the visible or non-visible ranges), an emitter optical assembly aligned with the emitter so as to illuminate an object outside the module with light produced by the emitter, a detector operable to detect light at one or more wavelengths produced by the emitter, and a detector optical assembly aligned with the detector so as to direct light reflected by the object toward the detector. In some implementations, the modules include features for expanding or shifting the linear photocurrent response of the detector.
Abstract:
An optoelectronic module includes a light guide arranged to receive light, such as ambient light or light reflected by an object. The light guide has a diffractive grating that includes multiple sections, each of which is tuned to a respective wavelength or narrow band of wavelengths. The module further includes multiple photosensitive elements, each of which is arranged to receive light diffracted by a respective one of the sections of the diffractive grating. The module can be integrated, for example, as part of a spectrometer or other apparatus for optically determining characteristics of an object.