Abstract:
Impedance control, and the uniformity of electrical and mechanical characteristics in electronic packaging are becoming more important as chip and bus speeds increase and manufacturing processes evolve. Current state of the art design and manufacture processes inherently introduce physical dielectric thickness variations into multilayer cross sections. These thickness variations between the ground reference plane(s) and the signal layer(s) inject undesirable characteristic impedance variations and undesirable mechanical variations in thickness and surface topology. Therefore a multilayer structure and a method of manufacture are presented.
Abstract:
A capacitor includes at least two electrode layers opposite to each other and a dielectric layer positioned between the at least two electrode layers. The at least two electrode layers have opposite polarities. Each electrode layer includes a positive electrode and a negative electrode. The positive electrode includes a plurality of first coupling portions spaced substantially evenly and arranged in parallel. The negative electrode includes a plurality of second coupling portions spaced substantially evenly and arranged in parallel. The positive electrode and the negative electrode of each electrode layer are coplanar, and the plurality of first coupling portions interlace with the plurality of second coupling portions.
Abstract:
A suspension board with circuit includes a metal supporting board, an insulating base layer formed on the metal supporting board, a conductive pattern formed on the insulating base layer, an insulating cover layer formed on the insulating base layer so as to cover the conductive pattern, and an insertion portion to be inserted into an E-block. A thickness of the insulating cover layer in the insertion portion is larger than a thickness of the insulating cover layer in a portion other than the insertion portion.
Abstract:
Systems and methods for screening applicants are disclosed herein. A method of screening applicants is performed by a screening server. The server begins by receiving a selection of screening services and an applicant profile that identifies an applicant. The screening continues by generating screening results specified by the selection of screening services based on the applicant profile. A property manager is then notified that the screening results are available for the applicant based upon the applicant profile. The screening results are then provided to the property manager based upon the applicant profile. Based on these screening results, the screener or porperty manager can make a decision about the applicant and communicate a decision action to the applicant.
Abstract:
A suspension board with circuit includes a gimbal portion. The gimbal portion includes a tongue portion formed at the inner side of the opening for being mounted with a slider mounted with a magnetic head for being electrically connected to the conductive layer, an outrigger portion formed at the outer side of the opening to support the tongue portion, and a passing portion passing through the opening of the gimbal portion and/or an outer side region of the outrigger portion. The passing portion includes the conductive layer and the insulating layer covering the conductive layer. The thickness of a lower half portion of the insulating layer in the passing portion is the same as that of an upper half portion thereof.
Abstract:
According to one exemplary embodiment, a circuit board for reducing dielectric loss, conductor loss, and insertion loss includes a pair of transmission lines. The pair of transmission lines has sufficient thickness to cause substantial broadside electromagnetic coupling between the pair of transmission lines, where the pair of transmission lines is sufficiently separated from a ground plane of the circuit board so as to cause negligible electromagnetic coupling to the ground plane relative to the substantial broadside electromagnetic coupling. The pair of transmission lines thereby reduce dielectric loss, conductor loss, and insertion loss for signals traversing through the transmission line pair. The pair of transmission lines can be separated from the ground plane by, for example, at least 50.0 mils.
Abstract:
A method (10) for manufacturing a monolithic molded electronic assembly (12). A mold (14) having first and second mold potions (14a-b) that mate to form an interior chamber (16) is provided. The mold has an injection port (22) and channel (24) connecting into the chamber. Electronic parts (30) having electronic contacts (32) are populated onto the second mold portion, to be substantially contained in the chamber. The mold potions are mated together and a liquid insulating molding material (36) is injected through the injection port channel to fill the chamber. The molding material is hardened to a solid, thereby embedding the electronic parts in the molding material as a monolithic sub-assembly (40). The monolithic sub-assembly is removed from the mold and one or more solderless conductive circuits (50) are applied to the electronic contacts of the electronic parts, thereby providing the electronic assembly.
Abstract:
A surface metal film material including, in this order, a substrate, a polymer layer that receives a plating catalyst or a precursor thereof, and a metal film formed by plating, wherein, when x μm represents surface roughness (Ra) at the interface between the substrate and the polymer layer, and y μm represents surface roughness (Ra) at the interface between the polymer layer and the metal film, x>y and 5 μm>x>0.1 μm, and wherein, when T μm represents a thickness of the polymer layer, T and x satisfy the relationship 2x≦T.
Abstract:
A flexible printed circuit assembly with a fluorocarbon dielectric layer and an adhesive layer with reduced thickness. The flexible printed circuit assembly includes a first dielectric layer and a signal trace disposed on the first dielectric layer. An adhesive layer with a thickness smaller than a height of the signal trace is disposed on the first dielectric layer, so that only a portion of a side surface of the signal trace is covered. A second dielectric layer made of fluorocarbon is disposed on the adhesive layer, covering a remaining portion of the side surface of the signal trace and a top surface of the signal trace.
Abstract:
A printed wiring board includes a wiring substrate provided with at least one conductor circuit, a solder resist layer formed on the surface of the wiring substrate, covering the at least one conductor circuit, conductor pads formed on a part of the at least one conductor circuit exposed from respective openings provided in the solder resist layer for mounting electronic parts, and solder bumps formed on the respective conductor pads. Connection reliability and insulation reliability are easily improved by making the ratio (H/D) of a height H from solder resist layer surface the solder bump to an opening diameter of the opening about 0.55 to about 1.0 even in narrow pitch structure under the pitch of the opening provided in the solder resist layer of about 200 μm or less.