Abstract:
Transmissions are received on a plurality of uplink physical resource blocks. An acknowledgement or negative acknowledgement for each of the received transmissions is mapped to a downlink channel, such that linear increasing sequential indices of the physical resource blocks map to linear increasing sequential indices of n groups of the downlink channel which repeat until all the physical resource blocks are mapped, in which the downlink channel comprises a plurality of n groups.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for extending range and delay spread in 2.4 and 5 GHz bands, and potentially frequency multiplexing users. An apparatus is provided for wireless communications. The apparatus generally includes a processing system configured to generate a packet comprising a first preamble decodable by a first type of device and a second type of device, a second preamble that is decodable by the second type of device, but not the first type of device, and data and a transmitter configured to transmit the packet, wherein the first preamble is transmitted using a first channel bandwidth and the second preamble and data are transmitted using only a portion of the first channel bandwidth.
Abstract:
A system and method for permuting known and unknown message bits before encoding to provide a beneficial rearrangement of bits. Such a method can improve distance properties in the resulting subcode. In various embodiments, the structure of a beneficial rearrangement is dependent on the parameters of how known and unknown bits are grouped and on the specific type of code being used. Given these two parameters, the message bits can be rearranged to more efficiently leverage any apriori knowledge.
Abstract:
A wireless communication system is disclosed. Disclosed herein are methods for transmitting a physical uplink control channel (PUCCH) signal in a wireless communication system, which includes setting transmit power for the PUCCH signal, and an apparatus thereof. If the PUCCH signal is transmitted on a subframe configured for a scheduling request (SR), the PUCCH signal includes one or more hybrid automatic repeat request acknowledgement (HARQ-ACK) bits and an SR bit. When determining the transmit power for the PUCCH, the SR bit is selectively considered depending on whether or not a transport block for an uplink shared channel (UL-SCH) is present in the subframe.
Abstract:
An apparatus and a method for allocating resources for transmitting an HARQ ACK/NACK signal for a downlink subframe using a PUCCH format 3 in a time division duplex (TDD) system using a single carrier are provided. Since the resources are allocated through a resource indicator transmitted using a power control field transmitted on a PDCCH of the downlink subframe, the resources for transmitting the HARQ ACK/NACK signal may be allocated by effectively using resources allocated to a duplicately transferred control signal.
Abstract:
This application discusses, among other things, communication apparatus and methods, and more particularly, a single conductor or single wire communication scheme. In an example, a method for communicating between a master device and a slave device using a first single conductor can include transmitting a first ping on the first single conductor using a master device, the first single conductor configured to couple the master device to a slave device, receiving a slave ping on the first single conductor at the master device during a ping interval, toggling a logic level of the first single conductor prior to sending a first data packet using pulses having a duration of less than one half of a unit interval, such as a unit interval associated with a bit interval.
Abstract:
The present invention makes it possible to obtain the transmission diversity effect by applying a CDD while reducing the inter-code interference when performing a code multiplexing. When an Ack/Nack signal is transmitted from a user terminal to a base station in an upstream control channel by using an Ack/Nack resource, the signal is code-multiplexed by using a code sequence containing an orthogonal sequence and a cyclic-shifted sequence and transmitted from a plurality of user terminals to the base station. Upon using an aggregation size indicating the number of control signals of the downstream control channel, if the aggregation size is greater than one, it is determined that no resource located at the right of the axis of the cyclic-shifted amount of the cyclic-shifted sequence in the same orthogonal code of the orthogonal sequence is used, and the Ack/Nack signal to which CDD is applied from a plurality of antennas is transmitted by using a resource ACK #0 allocated to the own device and an unused resource ACK #1, which have the same orthogonal code, but have different cyclic-shifted amounts.
Abstract:
Techniques for sending control information in a wireless communication system are described. A control segment may include L≧1 tiles, and each tile may include a number of transmission units. A number of control resources may be defined and mapped to the transmission units for the control segment. For symmetric mapping, multiple sets of S≧1 control resources may be formed, and each batch of L consecutive sets of S control resources may be mapped to S transmission units at the same location in the L tiles. For localized mapping, S>1, and each set of S control resources may be mapped to a cluster of S adjacent transmission units in one tile. For distributed mapping, S=1, and each control resource may be mapped to one transmission unit in one tile. For diversity, each control resource may be mapped to multiple (e.g., three) transmission units in at least one tile.
Abstract:
Embodiments of a system and methodology are disclosed for enabling a network to manage threshold values provided to UEs for use in decoding ACK-NAK signals. In various embodiments described herein, a base station signals an actual fixed threshold value in a semi-static manner for use by UEs to decode ACK/NAK signals. In these embodiments, the threshold value is part of a semi-static but UE-specific threshold value. This allows the base station to accommodate varying UE geometries, and optimize power savings for ACK-NAK transmissions. Embodiments of the invention also allow the base station to enforce a desired quality of service (QoS) without excessive power variations across ACK/NAK which are limited by the transmit power dynamic range.
Abstract:
A method to control channel signaling between elements in a wireless network (e.g., a UE and a network node) is described. The method includes making a first assignment by assigning a first resource to a UE for single AN signaling. Making a second assignment by assigning a second resource to the UE for multi-bit AN signaling in conjunction with the single AN signaling is also included in the method. A resource block reserved for sending dynamic AN feedback includes the first resource and the second resource. The method includes providing (e.g., via a transmitter) an indication of the first assignment and the second assignment Apparatus and computer readable media are also described.