Abstract:
Transmission quality is improved in an environment in which direct waves dominate in a transmission method for transmitting a plurality of modulated signals from a plurality of antennas at the same time. All data symbols used in data transmission of a modulated signal are precoded by hopping between precoding matrices so that the precoding matrix used to precode each data symbol and the precoding matrices used to precode data symbols that are adjacent to the data symbol in the frequency domain and the time domain all differ. A modulated signal with such data symbols arranged therein is transmitted.
Abstract:
Disclosed is a transmission scheme for transmitting a first modulated signal and a second modulated signal over the same frequency at the same time. According to the transmission scheme, a precoding weight multiplying unit multiplies a baseband signal after a first mapping and a baseband signal after a second mapping by a precoding weight and outputs the first modulated signal and the second modulated signal. In the precoding weight multiplying unit, precoding weights are regularly hopped.
Abstract:
A simple block coding arrangement is created with symbols transmitted over a plurality of transmit channels, in connection with coding that comprises only simple arithmetic operations, such as negation and conjugation. The diversity created by the transmitter utilizes space diversity and either time or frequency diversity. Space diversity is effected by redundantly transmitting over a plurality of antennas, time diversity is effected by redundantly transmitting at different times, and frequency diversity is effected by redundantly transmitting at different frequencies: Illustratively, using two transmit antennas and a single receive antenna, one of the disclosed embodiments provides the same diversity gain as the maximal-ratio receiver combining (MRRC) scheme with one transmit antenna and two receive antennas. The principles of this invention are applicable to arrangements with more than two antennas, and an illustrative embodiment is disclosed using the same space block code with two transmit and two receive antennas.
Abstract:
Techniques are provided for transmitting and receiving a mother code in an incremental redundancy hybrid automatic repeat-request protocol. A set of information bits corresponding to a message may be encoded and interleaved to produce the mother code. Each bit position of the mother code may be mapped to an output symbol, and each output symbol may be mapped to an antenna for transmission. One or more transmissions of symbols contained in the output symbols may be performed, where each transmission may include puncturing the mother code by selecting one or more symbols from the of output symbols, and transmitting each symbol in the one or more symbols on an antenna corresponding to that symbol. The mother code may be decoded, in part, by determining combinable bits contained within a set of received symbols, and computing one or more log-likelihood ratio values corresponding to each symbol in the set of received symbols.
Abstract:
Systems and methods are provided for enabling H-ARQ communication between a base station and one or more wireless terminals. Methods for enabling incremental redundancy (IR) based H-ARQ, Chase based H-ARQ and Space-Time Code combining (STC) based H-ARQ between devices for down-link and up-link direction transmissions are provided in the form of an information element (IE) for use with a Normal MAP convention as currently accepted in the draft version standard of IEEE 802.16. In addition, embodiments of the invention provide a resource management scheme to protect a network from abuse of resources from a wireless terminal not registered with the network. Components of the down-link and up-link mapping components of a data frame transmitted from the base station to one or more wireless terminals included messages that are readable by all wireless terminals as well as some messages that are encrypted and only readable by wireless terminals that are authenticated as being registered with the network.
Abstract:
An automatic retransmission request control system in an OFDM-MIMO communication system includes a retransmission mode selection part which selects a retransmission mode from among (a) a mode in which to transmit the data, which are to be retransmitted, via the same antenna as in the previous transmission, while transmitting, at the same time, new data by use of an antenna via which no data retransmission is requested; (b) a mode in which to transmit the data, which are to be retransmitted, via an antenna via which no retransmission is requested, while transmitting new data via another antenna at the same time; (c) a mode in which to use STBC to retransmit the data via an antenna via which no retransmission is requested; and (d) a mode in which to use STBC to retransmit the data via all the available antennas.
Abstract:
A simple block coding arrangement is created with symbols transmitted over a plurality of transmit channels, in connection with coding that comprises only simple arithmetic operations, such as negation and conjugation. The diversity created by the transmitter utilizes space diversity and either time or frequency diversity. Space diversity is effected by redundantly transmitting over a plurality of antennas, time diversity is effected by redundantly transmitting at different times, and frequency diversity is effected by redundantly transmitting at different frequencies: Illustratively, using two transmit antennas and a single receive antenna, one of the disclosed embodiments provides the same diversity gain as the maximal-ratio receiver combining (MRRC) scheme with one transmit antenna and two receive antennas. The principles of this invention are applicable to arrangements with more than two antennas, and an illustrative embodiment is disclosed using the same space block code with two transmit and two receive antennas.
Abstract:
Techniques are provided for transmitting and receiving a mother code in an incremental redundancy hybrid automatic repeat-request protocol. A set of information bits corresponding to a message may be encoded and interleaved to produce the mother code. Each bit position of the mother code may be mapped to an output symbol, and each output symbol may be mapped to an antenna for transmission. One or more transmissions of symbols contained in the output symbols may be performed, where each transmission may include puncturing the mother code by selecting one or more symbols from the of output symbols, and transmitting each symbol in the one or more symbols on an antenna corresponding to that symbol. The mother code may be decoded, in part, by determining combinable bits contained within a set of received symbols, and computing one or more log-likelihood ratio values corresponding to each symbol in the set of received symbols.
Abstract:
Embodiments of the present disclosure provide a link adaptation feedback method, including: receiving, by a transmitting device, a link adaptation feedback frame sent by a communication peer end, where the link adaptation feedback frame includes a modulation and coding scheme feedback request sequence identifier (MSI), where the MSI is configured to indicate space-time block coding type information; determining, according to the space-time block coding type indication information, use information about use of space-time block coding by a data frame related to the link adaptation feedback frame, and selecting, according to the use information, a space-time stream, modulation and coding scheme used when the transmitting device sends a data frame.
Abstract:
Bit permutation to bits of a codeword is performed such that: at least one spatial-multiplexing block is made up of bits from B/2 different cyclic-blocks; each constellation word of the at least one spatial-multiplexing block is made up of bits from Bt/2 different cyclic blocks, Bt being the number of bits of the constellation word; and each of the bit pairs of the constellation word is made up of bits from a common one of the Bt/2 different cyclic blocks.