摘要:
The invention relates to an arrangement for installing a source into a gas deposition reactor. The arrangement comprises at least one source fitting for the source such that the source fitting is connected to a reaction space of the gas deposition reactor, and a source installable at least partly inside the source fitting or a source space connected to the source fitting. According to the invention, the arrangement further comprises reception means in the source fitting for receiving the source, and charging means for installing the source in place in the source fitting for use, and a chamber (1), provided in the source, for a solid or liquid source material (3), and isolating means (7, 19) for isolating the chamber (1) substantially from environment.
摘要:
Provided is a MgO single crystal for obtaining a magnesium oxide (MgO) single crystal deposition material which is prevented from splashing during the vapor deposition in, e.g., an electron beam deposition method without reducing the deposition rate, and for obtaining a MgO single crystal substrate which can form thereon, e.g., a superconductor thin film having excellent superconducting properties. A MgO single crystal having a calcium content of 150×10−6 to 1,000×10−6 kg/kg and a silicon content of 10×10−6 kg/kg or less, wherein the MgO single crystal has a variation of 30% or less in terms of a CV value in detected amounts of calcium fragment ions, as analyzed by TOF-SIMS with respect to the polished surface of the MgO single crystal. A MgO single crystal deposition material and a MgO single crystal substrate for forming a thin film obtained from the MgO single crystal.
摘要翻译:本发明提供一种用于获得氧化镁(MgO)单晶沉积材料的MgO单晶,其在例如电子束沉积方法中在气相沉积期间防止溅射而不降低沉积速率,并且获得MgO单晶衬底 其可以在其上形成,例如具有优异超导性能的超导体薄膜。 具有钙含量为150×10 -6〜1,000×10 -6 kg / kg,硅含量为10×10 -6 kg / kg以下的MgO单晶,其中MgO单晶的变化范围为30%以下, 通过TOF-SIMS相对于MgO单晶的抛光表面分析的钙碎片离子的检测量的CV值。 一种MgO单晶沉积材料和用于形成由MgO单晶获得的薄膜的MgO单晶衬底。
摘要:
A container of a material supply apparatus is configured of a crucible and an orifice. The crucible has a cylindrical shape, a rectangular-column shape or the like, and is hollow. Heat sources such as heaters are disposed around the crucible. The orifice including an opening is provided on a side of the crucible in a material element supplying direction. The orifice includes a pipe portion that extends in the material element supplying direction. The opening is formed on a tip of the pipe portion. An opening area of the pipe portion is formed to become gradually narrower towards the material element supplying side, namely in a direction of the opening.
摘要:
A crucible for growing III-nitride (e.g., aluminum nitride) single crystals is provided. The crucible includes an elongated wall structure defining an interior crystal growth cavity. Embodiments include a plurality of grains and a wall thickness of at least about 1.5 times the average grain size. In particular embodiments, the crucible includes first and second layers of grains the first layer including grains forming an inside surface thereof and the second layer being superposed with the first layer. The crucible may be fabricated from tungsten-rhenium (W—Re) alloys; rhenium (Re); tantalum monocarbide (TaC); tantalum nitride (Ta2N); hafnium nitride (HfN); a mixture of tungsten and tantalum (W—Ta); tungsten (W); and combinations thereof.
摘要:
Dislocation pile-ups in compositionally graded semiconductor layers are reduced or eliminated, thereby leading to increased semiconductor device yield and manufacturability. This is accomplished by introducing a semiconductor layer having a plurality of threading dislocations distributed substantially uniformly across its surface as a starting layer and/or at least one intermediate layer during growth and relaxation of the compositionally graded layer. The semiconductor layer may include a seed layer disposed proximal to the surface of the semiconductor layer and having the threading dislocations uniformly distributed therein.
摘要:
The invention relates to an effusing source for film deposition made of a reservoir comprising one hole characterized by the fact that the hole diameter is less than one order of magnitude than the mean free path of the molecules determined by the pressure and its thickness is at least one order of magnitude smaller than the diameter. Preferably the source has several holes.
摘要:
A pyrolytic boron nirtride double container for a source of molecular beams used in molecular beam epitaxy, wherein the transmissivity of an inner container of the pyrolytic boron nitride double container with respect to light having a wave number of 2600 cm−1 to 6500 cm−1 is 90% or less of that of an outer container. The pyrolytic boron nitride double container, which enables molecular beams to generate stably with good temperature controllability and high heat efficiency and which can be used in a stable manner, is provided through a simple process and at low cost, so that molecular beam epitaxial growth can be stabilized, quality of the epitaxial film can be improved, and even though the rise and drop in the temperature of the material melt is repeated, or even at an emergency suspension of the operation, the trouble due to breakage of the container can be prevented.
摘要:
Cracker apparatus, comprising a container for providing at least one gaseous crackable source material, which container has an at least substantially open second end part forming an outlet opening, dispenser means for receiving said gaseous crackable source material from said container and for controlling the flow of said gaseous crackable source material, and cracker means for receiving said at least one gaseous crackable source material from said dispenser means. The second end part of the source material container is arranged to be detachably coupled to the dispenser means, and the supply of new source material into the source material container is arranged through said outlet opening when said container is detached from the dispenser means.
摘要:
A method and apparatus for axially growing single crystal silicon carbide is provided. Utilizing the system, silicon carbide can be grown with a dislocation density of less than 104 per square centimeter, a micropipe density of less than 10 per square centimeter, and a secondary phase inclusion density of less than 10 per cubic centimeter. As disclosed, a SiC source and a SiC seed crystal of the desired polytype are co-located within a crucible, the growth zone being defined by the substantially parallel surfaces of the source and the seed in combination with the sidewalls of the crucible. Prior to reaching the growth temperature, the crucible is evacuated and sealed, either directly or through the use of a secondary container housing the crucible. The crucible is comprised of tantalum or niobium that has been specially treated. As a result of the treatment, the inner surfaces of the crucible exhibit a depth variable composition of Ta—Si—C or Nb—Si—C that is no longer capable of absorbing SiC vapors, thus allowing the vapor-phase composition within the crucible to be close to the SiC—Si system with the partial pressure of Si-vapor slightly higher than that in the SiC—Si system.
摘要:
A method and apparatus for axially growing single crystal silicon carbide is provided. Utilizing the system, silicon carbide can be grown with a dislocation density of less than 104 per square centimeter, a micropipe density of less than 10 per square centimeter, and a secondary phase inclusion density of less than 10 per cubic centimeter. As disclosed, a SiC source and a SiC seed crystal of the desired polytype are co-located within a crucible, the growth zone being defined by the substantially parallel surfaces of the source and the seed in combination with the sidewalls of the crucible. Prior to reaching the growth temperature, the crucible is evacuated and sealed, either directly or through the use of a secondary container housing the crucible. The crucible is comprised of tantalum or niobium that has been specially treated. As a result of the treatment, the inner surfaces of the crucible exhibit a depth variable composition of TanullSinullC or NbnullSinullC that is no longer capable of absorbing SiC vapors, thus allowing the vapor-phase composition within the crucible to be close to the SiCnullSi system with the partial pressure of Si-vapor slightly higher than that in the SiCnullSi system.