Abstract:
The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include the step of contacting the first region of the electrochemical cell with a catholyte comprising an alcohol and carbon dioxide. Another step of the method may include contacting the second region of the electrochemical cell with an anolyte comprising the alcohol. Further, the method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region.
Abstract:
Methods and systems for electrochemically generating an oxidation product and a reduction product may include one or more operations including, but not limited to: receiving a feed of at least one organic compound into an anolyte region of an electrochemical cell including an anode; at least partially oxidizing the at least one organic compound at the anode to generate at least carbon dioxide; receiving a feed including carbon dioxide into a catholyte region of the electrochemical cell including a cathode; and at least partially reducing carbon dioxide to generate a reduction product at the cathode.
Abstract:
A catalyst for the electrolysis of water molecules and hydrocarbons, the catalyst including catalytic groups comprising A1-xB2−yB′yO4 spinels having a cubical M4O4 core, wherein A is Li or Na, B and B′ are independently any transition metal or main group metal, M is B, B′, or both, x is a number from 0 to 1, and y is a number from 0 to 2. In photo-electrolytic applications, a plurality of catalytic groups are supported on a conductive support substrate capable of incorporating water molecules. At least some of the catalytic groups, supported by the support substrate, are able to catalytically interact with water molecules incorporated into the support substrate. The catalyst can also be used as part of a photo-electrochemical cell for the generation of electrical energy.
Abstract:
There are provided methods and systems for an electrochemical cell including an anode and a cathode where the anode is contacted with a metal ion that converts the metal ion from a lower oxidation state to a higher oxidation state. The metal ion in the higher oxidation state is reacted with hydrogen gas, an unsaturated hydrocarbon, and/or a saturated hydrocarbon to form products.
Abstract:
The invention relates to an ionic liquid composition and a method for preparing the ionic liquid. The ionic liquid comprises a cation containing the Formula I, as herein disclosed, and wherein: n is 2, R1 is selected from the group consisting of: H, C1-C12 alkyl, aryl or together with R2 may form a heterocyclic ring, and R2 is selected from the group consisting of: H, C1-C12 alkyl, aryl or together with R1 may form a heterocyclic ring, and R3 is selected from the group consisting of hydrogen and C1-C12 alkyl, and wherein R1 and R2 are not simultaneously selected from hydrogen.
Abstract:
Methods for the production of erythrose and/or erythritol are provided herein. Preferably, the methods include the step of electrolytic decarboxylation of a ribonic acid or arabinonic acid reactant to produce erythrose. Optionally, the reactant can be obtained from a suitable hexose sugar, such as allose, altrose, glucose, fructose or mannose. The erythrose product can be hydrogenated to produce erythritol.
Abstract:
A method for preparing a polycarboxylic composition, includes a stage in which a monosaccharide composition undergoes an electrochemical oxidation treatment carried out in the absence of sodium hypochlorite and in the presence of a) an amine oxide and b) a carbon-based anode. Preferably, the anode is selected from the group comprising carbon felt and granular active carbon. The electrochemical oxidation treatment can be carried out advantageously at a pH, preferably of between 11.5 and 14. The method makes it possible to obtain novel products, especially 2-carboxy-2, 3, 4-trihydroxypentane-dioicious acid, the salts and derivatives thereof.
Abstract:
The invention relates to an ionic liquid composition and a method for preparing the ionic liquid. The ionic liquid comprises a cation containing the Formula I, as herein disclosed, and wherein: n is 1 or 2, R1 is selected from the group consisting of: H, C1-C12 alkyl, aryl or together with R2 may form a heterocyclic ring, and R2 is selected from the group consisting of: H, C1-C12 alkyl, aryl or together with R1 may form a heterocyclic ring, and R3 is selected from the group consisting of hydrogen and C1-C12 alkyl, wherein if n is 1, then R3 is C1-C12 alkyl; and wherein R1 and R2 are not simultaneously selected from hydrogen. The method for the preparation of the ionic liquid composition provided herein starts with at least one N-substitution of the compound of Formula II, as herein disclosed, and wherein: n is 1 or 2, R3 is selected from the group consisting of hydrogen and C1-C12 alkyl, wherein if n is 1, then R3 is C1-C12 alkyl. Further provided is a use of the ionic liquid in a chemical method including at least a method for electrochemical oxidation.
Abstract:
There is disclosed an electrochemical deblocking solution for use on an electrode microarray. There is further disclosed a method for electrochemical synthesis on an electrode array using the electrochemical deblocking solution. The solution and method are for removing acid-labile protecting groups for synthesis of oligonucleotides, peptides, small molecules, or polymers on a microarray of electrodes while substantially improving isolation of deblocking to active electrodes. The method comprises applying a voltage or a current to at least one electrode of an array of electrodes. The array of electrodes is covered by the electrochemical deblocking solution.
Abstract:
Solid membranes comprising an intimate, gas-impervious, multi-phase mixture of an electronically-conductive material and an oxygen ion-conductive material and/or a mixed metal oxide of a perovskite structure are described. Electrochemical reactor components, such as reactor cells, and electrochemical reactors are also described for transporting oxygen from any oxygen-containing gas to any gas or mixture of gases that consume oxygen. The reactor cells generally comprise first and second zones separated by an element having a first surface capable of reducing oxygen to oxygen ions, a second surface capable of reacting oxygen ions with an oxygen-consuming gas, an electron-conductive path between the first and second surfaces and an oxygen ion-conductive path between the first and second surfaces. The element may further comprise (1) a porous substrate, (2) an electron-conductive metal, metal oxide or mixture thereof and/or (3) a catalyst. The reactor cell may further comprise a catalyst in the zone which comprises a passageway from an entrance end to an exit end of the element. Processes described which may be conducted with the disclosed reactor cells and reactors include, for example, the partial oxidation of methane to produce unsaturated compounds or synthesis gas, the partial oxidation of ethane, substitution of aromatic compounds, extraction of oxygen from oxygen-containing gases including oxidized gases, ammoxidation of methane, etc. The extraction of oxygen from oxidized gases may be used for flue or exhaust gas cleanup.